9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 12
Dec.  2025
Turn off MathJax
Article Contents

Deep insights and clinical benefits from the comprehensive cohort of fetal skeletal dysplasia in China

doi: 10.1016/j.jgg.2025.09.005
Funds:

National High Level Hospital Clinical Research Funding (2022-PUMCH-D-004 to J.Z. and N.W., 2022-PUMCH-C-033 to N.W., 2022-PUMCH-D-002 to Z.W.)

CAMS Innovation Fund for Medical Sciences (CIFMS, 2021-I2M-1-051 to J.Z. and N.W., 2021-I2M-1-052 and 2022-I2M-2-001 to Z.W., 2023-I2M-C&

T-A-003 to J.Z.)

National Natural Science Foundation of China (82172525 to G.Q., 82172382 to J.Z.)

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2019PT320025 to N.W.).

This study was funded in part by the National Key Research and Development Program of China (2022YFC2703100 to S.Z., 2024YFC2707100 for Q.Q., 2022YFC2703901 to Z.W., 2022YFC2703102 to N.W.)

  • Received Date: 2025-05-21
  • Accepted Date: 2025-09-09
  • Rev Recd Date: 2025-09-07
  • Publish Date: 2025-12-31
  • Fetal skeletal dysplasia (FSD) encompasses diverse clinical features and complicates prenatal diagnosis and perinatal care. In this retrospective study, we integrate prenatal deep phenotyping with exome or genome sequencing (ES/GS) to elucidate comprehensive genotype and phenotype landscapes, diagnostic outcomes, genotype-phenotype correlations, and postnatal follow-up findings and to refine genetic counseling and clinical decision-making. The study includes a cohort of 152 fetuses with FSD in China. All fetuses undergo prenatal deep phenotyping followed by ES/GS analysis. Prenatal deep phenotyping enables classification into isolated and non-isolated FSD groups and identifies previously unrecognized prenatal features associated with KBG syndrome and Segawa syndrome. Among skeletal anomalies, limb bone anomalies are the most common (72.4%). Genetic testing yields positive diagnoses in 88 fetuses (57.9%). Notably, fetuses with cranial and limb bone abnormalities demonstrate a higher diagnostic yield. Comparative analysis of prenatal and postnatal genotypes and phenotypes in individuals harboring pathogenic variants in four hotspot genes provides a deeper understanding of skeletal dysplasia phenotypes. Genetic findings from this cohort directly inform reproductive decisions in 16 subsequent pregnancies. Our findings significantly enhance genotype-phenotype correlations and contribute to improved prenatal counseling, informed clinical decision-making, and optimized perinatal care, and advance precision medicine strategies for FSD-affected families.
  • loading
  • Ahmed, B., Fakhry, A.B., Luetic, A.T.,Kurjak, A., 2010. Pattern and prenatal diagnosis of skeletal dysplasias in Qatar population. J. Matern. Fetal Neonatal Med. 23, 1500-1503.
    Akalin, M., Demirci, O., Bolat, G., Kahramanoglu, O., Eric Ozdemir, M.,Karaman, A., 2022. Foetal thoracic hypoplasia: concomitant anomalies and neonatal outcomes. J. Obstet. Gynaecol. 42, 848-853.
    Arundel, P.,Borg, S.A., 2023. Early life management of osteogenesis imperfecta. Curr. Osteoporos. Rep. 21, 779-786.
    Austin-Tse, C.A., Jobanputra, V., Perry, D.L., Bick, D., Taft, R.J., Venner, E., Gibbs, R.A., Young, T., Barnett, S., Belmont, J.W., et al., 2022. Best practices for the interpretation and reporting of clinical whole genome sequencing. NPJ. Genom. Med. 7, 27.
    Barbaric, I., Perry, M.J., Dear, T.N., Rodrigues Da Costa, A., Salopek, D., Marusic, A., Hough, T., Wells, S., Hunter, A.J., Cheeseman, M., et al., 2008. An ENU-induced mutation in the Ankrd11 gene results in an osteopenia-like phenotype in the mouse mutant Yoda. Physiol. Genomics. 32, 311-321.
    Ben Amor, I.M., Glorieux, F.H.,Rauch, F., 2011. Genotype-phenotype correlations in autosomal dominant osteogenesis imperfecta. J. Osteoporos. 2011, 540178.
    Best, S., Wou, K., Vora, N., Van der Veyver, I.B., Wapner, R.,Chitty, L.S., 2018. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat. Diagn. 38, 10-19.
    Das, S., Sharma, C., Yadav, T., Dubey, K., Shekhar, S., Singh, P., Singh, K., Gothwal, M., Jhirwal, M.,Shekhawat, D.S., 2024. Absent or hypoplastic nasal bone: What to tell the prospective parents? Birth. Defects. Res. 116, e2348.
    Drexler, K.A., Talati, A.N., Gilmore, K.L., Veazey, R.V., Powell, B.C., Weck, K.E., Davis, E.E.,Vora, N.L., 2023. Association of deep phenotyping with diagnostic yield of prenatal exome sequencing for fetal brain abnormalities. Genet. Med. 25, 100915.
    Dukhovny, S.,Norton, M.E., 2018. What are the goals of prenatal genetic testing? Semin. Perinatol. 42, 270-274.
    Fortin, O., Mulkey, S.B.,Fraser, J.L., 2024. Advancing fetal diagnosis and prognostication using comprehensive prenatal phenotyping and genetic testing. Pediatr. Res. 97, 1269-1279.
    Fu, F., Li, R., Yu, Q., Wang, D., Deng, Q., Li, L., Lei, T., Chen, G., Nie, Z., Yang, X., et al., 2022. Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses. Genome. Med. 14, 123.
    Funamura, J.L.,Tollefson, T.T., 2016. Congenital anomalies of the nose. Facial Plast. Surg. 32, 133-141.
    Furukawa, Y.,Kish, S. 1993. Tyrosine hydroxylase deficiency, in: Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A. (eds.), GeneReviews(®). University of Washington, Seattle.
    Gregersen, P.A.,Savarirayan, R. 1993. Type II collagen disorders overview, in: Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A. (eds.), GeneReviews(®). University of Washington, Seattle.
    Guillot, P.V., Abass, O., Bassett, J.H., Shefelbine, S.J., Bou-Gharios, G., Chan, J., Kurata, H., Williams, G.R., Polak, J.,Fisk, N.M., 2008. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood. 111, 1717-1725.
    Guo, L., Park, J., Yi, E., Marchi, E., Hsieh, T.C., Kibalnyk, Y., Moreno-Saez, Y., Biskup, S., Puk, O., Beger, C., et al., 2022. KBG syndrome: videoconferencing and use of artificial intelligence driven facial phenotyping in 25 new patients. Eur. J. Hum. Genet. 30, 1244-1254.
    Hannan, F.M., Newey, P.J., Whyte, M.P.,Thakker, R.V. 2020. Genetics of skeletal disorders, in: Stern, P.H. (eds.), Bone regulators and osteoporosis therapy. Springer International Publishing, Cham, pp. 325-351.
    Hanson, J., Brezavar, D., Hughes, S., Amudhavalli, S., Fleming, E., Zhou, D., Alaimo, J.T.,Bonnen, P.E., 2022. TAB2 variants cause cardiovascular heart disease, connective tissue disorder, and developmental delay. Clin. Genet. 101, 214-220.
    Harel, T.,Lupski, J.R., 2018. Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin. Genet. 93, 439-449.
    Huang, Y., Liu, C., Ding, H., Wang, Y., Yu, L., Guo, F., Li, F., Shi, X., Zhang, Y.,Yin, A., 2023. Exome sequencing in fetuses with short long bones detected by ultrasonography: A retrospective cohort study. Front. Genet. 14, 1032346.
    Jiang, M., Zhang, B., Wang, J., Qiao, W., Mao, X.,Yu, B., 2025. Sequential prenatal diagnosis of fetal skeletal dysplasia: A cohort study. Acta Obstet. Gynecol. Scand. 104, 860-874.
    Ju, M., Bai, X., Zhang, T., Lin, Y., Yang, L., Zhou, H., Chang, X., Guan, S., Ren, X., Li, K., et al., 2020. Mutation spectrum of COL1A1/COL1A2 screening by high-resolution melting analysis of Chinese patients with osteogenesis imperfecta. J. Bone. Miner. Metab. 38, 188-197.
    Kalayci, T., Altunoglu, U., Çorbacioglu Esmer, A., Avcı, Ş., Sarac Sivrikoz, T., Karaman, B., Kalelioğlu, İ., Has, R., Uyguner, Z.O., Yüksel, A., et al., 2023. Fetal skeletal dysplasia cohort of a single tertiary referral center in Istanbul, Turkey. Am. J. Med. Genet. A 191, 498-509.
    Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al., 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581, 434-443.
    Kierzkowska, O., Sarino, K., Carter, D., Guo, L., Marchi, E., Voronova, A.,Lyon, G.J., 2023. Documentation and prevalence of prenatal and neonatal outcomes in a cohort of individuals with KBG syndrome. Am. J. Med. Genet. A. 191, 2364-2375.
    Krakow, D., Lachman, R.S.,Rimoin, D.L., 2009. Guidelines for the prenatal diagnosis of fetal skeletal dysplasias. Genet. Med. 11, 127-133.
    Lazier, J., Hartley, T., Brock, J.A., Caluseriu, O., Chitayat, D., Laberge, A.M., Langlois, S., Lauzon, J., Nelson, T.N., Parboosingh, J., et al., 2022. Clinical application of fetal genome-wide sequencing during pregnancy: position statement of the Canadian College of Medical Geneticists. J. Med. Genet. 59, 931-937.
    Li, G., Xu, K., Yin, X., Yang, J., Cai, J., Yang, X., Li, Q., Wang, J., Zhao, Z., Mahesahti, A., et al., 2024. Integrating deep phenotyping with genetic analysis: a comprehensive workflow for diagnosis and management of rare bone diseases. Orphanet. J. Rare. Dis. 19, 371.
    Lindelof, H., Hammarsjo, A., Voss, U., Gaetana Piticchio, S., Conner, P., Papadogiannakis, N., Batkovskyte, D., Orellana, L., Kvarnung, M., Malmgren, H., et al., 2025. Genome sequencing in a cohort of 32 fetuses with genetic skeletal disorders. Eur. J. Hum. Genet. 393, 747-757.
    Lindstrand, A., Frangakis, S., Carvalho, C.M., Richardson, E.B., McFadden, K.A., Willer, J.R., Pehlivan, D., Liu, P., Pediaditakis, I.L., Sabo, A., et al., 2016. Copy-number variation contributes to the mutational load of bardet-biedl syndrome. Am. J. Hum. Genet. 99, 318-336.
    Lionel, A.C., Costain, G., Monfared, N., Walker, S., Reuter, M.S., Hosseini, S.M., Thiruvahindrapuram, B., Merico, D., Jobling, R., Nalpathamkalam, T., et al., 2018. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet. Med. 20, 435-443.
    Liu, P., Meng, L., Normand, E.A., Xia, F., Song, X., Ghazi, A., Rosenfeld, J., Magoulas, P.L., Braxton, A., Ward, P., et al., 2019. Reanalysis of clinical exome sequencing data. N. Engl. J. Med. 380, 2478-2480.
    Lord, J., McMullan, D.J., Eberhardt, R.Y., Rinck, G., Hamilton, S.J., Quinlan-Jones, E., Prigmore, E., Keelagher, R., Best, S.K., Carey, G.K., et al., 2019. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet. 393, 747-757.
    Monaghan, K.G., Leach, N.T., Pekarek, D., Prasad, P.,Rose, N.C., 2020. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 22, 675-680.
    Morel Swols, D.,Tekin, M. 1993. KBG Syndrome, in: Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A. (eds.), GeneReviews(®). University of Washington, Seattle.
    Morlino, S., Micale, L., Ritelli, M., Rohrbach, M., Zoppi, N., Vandersteen, A., Mackay, S., Agolini, E., Cocciadiferro, D., Sasaki, E., et al., 2020. COL1-related overlap disorder: A novel connective tissue disorder incorporating the osteogenesis imperfecta/Ehlers-Danlos syndrome overlap. Clin. Genet. 97, 396-406.
    Otsuru, S., Gordon, P.L., Shimono, K., Jethva, R., Marino, R., Phillips, C.L., Hofmann, T.J., Veronesi, E., Dominici, M., Iwamoto, M., et al., 2012. Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood. 120, 1933-1941.
    Paquette, A.G., Hood, L., Price, N.D.,Sadovsky, Y., 2020. Deep phenotyping during pregnancy for predictive and preventive medicine. Sci. Transl. Med. 12, eaay1059.
    Peluso, F., Caraffi, S.G., Contro, G., Valeri, L., Napoli, M., Carboni, G., Seth, A., Zuntini, R., Coccia, E., Astrea, G., et al., 2023. Deep phenotyping of the neuroimaging and skeletal features in KBG syndrome: a study of 53 patients and review of the literature. J. Med. Genet. 60, 1224-1234.
    Peng, Y., Yang, S., Huang, X., Pang, J., Liu, J., Hu, J., Shen, X., Tang, C.,Wang, H., 2021. Whole exome sequencing analysis in fetal skeletal dysplasia detected by ultrasonography: An analysis of 38 cases. Front. Genet. 12, 728544.
    Perea-Romero, I., Blanco-Kelly, F., Sanchez-Navarro, I., Lorda-Sanchez, I., Tahsin-Swafiri, S., Avila-Fernandez, A., Martin-Merida, I., Trujillo-Tiebas, M.J., Lopez-Rodriguez, R., Rodriguez de Alba, M., et al., 2021. NGS and phenotypic ontology-based approaches increase the diagnostic yield in syndromic retinal diseases. Hum. Genet. 140, 1665-1678.
    Qi, Q., Jiang, Y., Zhou, X., Lu, Y., Xiao, R., Bai, J., Lou, H., Sun, W., Lian, Y., Hao, N., et al., 2024. Whole-genome sequencing analysis in fetal structural anomalies: novel phenotype-genotype discoveries. Ultrasound. Obstet. Gynecol. 63, 664-671.
    Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., et al., 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405-424.
    Riggs, E.R., Andersen, E.F., Cherry, A.M., Kantarci, S., Kearney, H., Patel, A., Raca, G., Ritter, D.I., South, S.T., Thorland, E.C., et al., 2020. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245-257.
    Robinson, P.N., 2012. Deep phenotyping for precision medicine. Hum. Mutat. 33, 777-780.
    Savarirayan, R., De Bergua, J.M., Arundel, P., McDevitt, H., Cormier-Daire, V., Saraff, V., Skae, M., Delgado, B., Leiva-Gea, A., Santos-Simarro, F., et al., 2022. Infigratinib in children with achondroplasia: the PROPEL and PROPEL 2 studies. Ther. Adv. Musculoskelet. Dis. 14, 1759720x221084848.
    Savarirayan, R., De Bergua, J.M., Arundel, P., Salles, J.P., Saraff, V., Delgado, B., Leiva-Gea, A., McDevitt, H., Nicolino, M., Rossi, M., et al., 2025. Oral infigratinib therapy in children with achondroplasia. N. Engl. J. Med. 392, 865-874.
    Savarirayan, R., Irving, M., Bacino, C.A., Bostwick, B., Charrow, J., Cormier-Daire, V., Le Quan Sang, K.H., Dickson, P., Harmatz, P., Phillips, J., et al., 2019. C-type natriuretic peptide analogue therapy in children with achondroplasia. N. Engl. J. Med. 381, 25-35.
    Savarirayan, R., Rossiter, J.P., Hoover-Fong, J.E., Irving, M., Bompadre, V., Goldberg, M.J., Bober, M.B., Cho, T.J., Kamps, S.E., Mackenzie, W.G., et al., 2018. Best practice guidelines regarding prenatal evaluation and delivery of patients with skeletal dysplasia. Am. J. Obstet. Gynecol. 219, 545-562.
    Savarirayan, R., Tofts, L., Irving, M., Wilcox, W., Bacino, C.A., Hoover-Fong, J., Ullot Font, R., Harmatz, P., Rutsch, F., Bober, M.B., et al., 2020. Once-daily, subcutaneous vosoritide therapy in children with achondroplasia: a randomised, double-blind, phase 3, placebo-controlled, multicentre trial. Lancet. 396, 684-692.
    Schmidt, A., Danyel, M., Grundmann, K., Brunet, T., Klinkhammer, H., Hsieh, T.C., Engels, H., Peters, S., Knaus, A., Moosa, S., et al., 2024. Next-generation phenotyping integrated in a national framework for patients with ultrarare disorders improves genetic diagnostics and yields new molecular findings. Nat. Genet. 56, 1644-1653.
    Schramm, T.,Mommsen, H., 2018. Fetal skeletal disorders. Ultraschall. Med. 39, 610-634.
    Shear, M.A., Robinson, P.N.,Sparks, T.N., 2025. Fetal imaging, phenotyping, and genomic testing in modern prenatal diagnosis. Best. Pract. Res. Clin. Obstet. Gynaecol. 98, 102575.
    Shinar, S., Chitayat, D., Shannon, P.,Blaser, S., 2023. Fetal macrocephaly: Pathophysiology, prenatal diagnosis and management. Prenat. Diagn. 43, 1650-1661.
    Shohat, M., Tick, D., Barakat, S., Bu, X., Melmed, S.,Rimoin, D.L., 1996. Short-term recombinant human growth hormone treatment increases growth rate in achondroplasia. J. Clin. Endocrinol. Metab. 81, 4033-4037.
    Sparks, T.N.,Dugoff, L., 2023. How to choose a test for prenatal genetic diagnosis: a practical overview. Am. J. Obstet. Gynecol. 228, 178-186.
    Steiner, R.D.,Basel, D. 1993. COL1A1/2 osteogenesis imperfecta, in: Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A. (eds.), GeneReviews(®). University of Washington, Seattle.
    Tang, J., Zhou, C., Shi, H., Mo, Y., Tan, W., Sun, T., Zhu, J., Li, Q., Li, H., Li, Y., et al., 2020. Prenatal diagnosis of skeletal dysplasias using whole exome sequencing in China. Clin. Chim. Acta. 507, 187-193.
    Torre, M., Rapuzzi, G., Jasonni, V.,Varela, P., 2012. Chest wall deformities: an overview on classification and surgical options, in: Cardoso, P. (eds.), Topics in thoracic surgery. BoD-Books on Demand, pp. 117-136.
    Unger, S., Ferreira, C.R., Mortier, G.R., Ali, H., Bertola, D.R., Calder, A., Cohn, D.H., Cormier-Daire, V., Girisha, K.M., Hall, C., et al., 2023. Nosology of genetic skeletal disorders: 2023 revision. Am. J. Med. Genet. A. 191, 1164-1209.
    Wang, A., Brown, E.G., Lankford, L., Keller, B.A., Pivetti, C.D., Sitkin, N.A., Beattie, M.S., Bresnahan, J.C.,Farmer, D.L., 2015. Placental mesenchymal stromal cells rescue ambulation in ovine myelomeningocele. Stem. Cells. Transl. Med. 4, 659-669.
    Wang, Q., Tang, X., Yang, K., Huo, X., Zhang, H., Ding, K.,Liao, S., 2022. Deep phenotyping and whole-exome sequencing improved the diagnostic yield for nuclear pedigrees with neurodevelopmental disorders. Mol. Genet. Genomic. Med. 10, e1918.
    Woods, E., Marson, I., Coci, E., Spiller, M., Kumar, A., Brady, A., Homfray, T., Fisher, R., Turnpenny, P., Rankin, J., et al., 2022. Expanding the phenotype of TAB2 variants and literature review. Am. J. Med. Genet. A. 188, 3331-3342.
    Wynne-Davies, R., 1975. Congenital vertebral anomalies: aetiology and relationship to spina bifida cystica. J. Med. Genet. 12, 280-288.
    Yang, K., Shen, M., Yan, Y., Tan, Y., Zhang, J., Wu, J., Yang, G., Li, S., Wang, J., Ren, Z., et al., 2019. Genetic analysis in fetal skeletal dysplasias by trio whole-exome sequencing. Biomed. Res. Int. 2019, 2492590.
    Zhang, L., Pan, L., Teng, Y., Liang, D., Li, Z.,Wu, L., 2021a. Molecular diagnosis for 55 fetuses with skeletal dysplasias by whole-exome sequencing: A retrospective cohort study. Clin. Genet. 100, 219-226.
    Zhang, X., Ren, Y., Song, R., Wang, L., Xu, H., Xie, X., Zhou, H., Sun, P., Zhang, M., Zhao, Q., et al., 2021b. Combined exome sequencing and deep phenotyping in highly selected fetuses with skeletal dysplasia during the first and second trimesters improves diagnostic yield. Prenat. Diagn. 41, 1401-1413.
    Zhao, S., Zhang, Y., Chen, W., Li, W., Wang, S., Wang, L., Zhao, Y., Lin, M., Ye, Y., Lin, J., et al., 2021. Diagnostic yield and clinical impact of exome sequencing in early-onset scoliosis (EOS). J. Med. Genet. 58, 41-47.
    Zhao, S., Zhao, H., Zhao, L., Cheng, X., Zheng, Z., Wu, M., Wen, W., Wang, S., Zhou, Z., Xie, H., et al., 2024. Unraveling the genetic architecture of congenital vertebral malformation with reference to the developing spine. Nat. Commun. 15, 1125.
    Zhen, L., Pan, M., Han, J., Yang, X., Liao, C.,Li, D.Z., 2015. Increased first-trimester nuchal translucency associated with thanatophoric dysplasia type 1. J. Obstet. Gynaecol. 35, 685-687.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (42) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return