9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 12
Dec.  2025
Turn off MathJax
Article Contents

The mechanistic insights into fruit ripening: integrating phytohormones, transcription factors, and epigenetic modification

doi: 10.1016/j.jgg.2025.06.001
Funds:

This work was supported in part by the National Natural Science Foundation of China (32372780 and 32172643), the Institutional Research Funding of Sichuan University (2022SCUNL105), the Natural Science Foundation of Sichuan Province (2024NSFSC1302), the China Postdoctoral Science Foundation (2023M732486), and the Guangxi Science and Technology Program (2024AB08197).

  • Received Date: 2025-04-22
  • Accepted Date: 2025-06-20
  • Rev Recd Date: 2025-06-20
  • Publish Date: 2025-12-31
  • Fruit ripening is a complex developmental process tightly regulated by hormonal crosstalk, transcriptional networks, and epigenetic modifications, with striking divergence between climacteric and non-climacteric species. In climacteric fruits, such as tomatoes, apples, and bananas, ethylene acts as the master regulator, driving autocatalytic biosynthesis through ACS/ACO genes and activating hierarchical transcriptional cascades mediated by MADS-box (RIN), NAC (NOR), and ERF-family transcription factors. These pathways are amplified by epigenetic reprogramming, including DNA demethylation at ripening-related promoters and histone acetylation, which enhance chromatin accessibility to facilitate gene expression. Conversely, non-climacteric fruits like strawberries and grapes predominantly rely on abscisic acid (ABA) to coordinate ripening. Hormonal interplay, such as ethylene-ABA synergy in climacteric fruit systems, further fine-tunes ripening dynamics. Advances in CRISPR-based gene editing and epigenome engineering now enable precise manipulation of these pathways, offering transformative solutions to reduce postharvest losses, enhance nutritional quality, and improve climate resilience. This review integrates mechanistic insights across species, emphasizing opportunities to translate fundamental discoveries into sustainable agricultural innovations, from breeding nutrient-rich cultivars to optimizing postharvest technologies for global food security.
  • loading
  • Adhikari, P.B., Kasahara, R.D., 2024. An overview on MADS box members in plants: a meta-review. Int. J. Mol. Sci 25, 8233.
    Afzal, S., Mubeen, M., Hussain, S., Ali, M., Javeed, H.M.R., Al-Ashkar, I., Soufan, W., Pandey, S., Islam, M.S., El Sabagh, A., et al., 2023. Modern breeding approaches for climate change, in: Jatoi, W.N., Mubeen, M., Hashmi, M.Z., Ali, S., Fahad, S., Mahmood, K. (eds.), Climate change impacts on agriculture: concepts, issues and policies for developing countries. Springer Cham, pp. 299-313.
    Ahmar, S., Gill, R.A., Jung, K.-H., Faheem, A., Qasim, M.U., Mubeen, M., Zhou, W., 2020. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int. J. Mol. Sci 21, 2590.
    Asins, M.J., Bernet, G.P., Villalta, I., Carbonell, E.A., 2009. QTL analysis in plant breeding, in: Jain, S.M., Brar, D.S. (Eds.), Molecular techniques in crop improvement: 2nd edition. Springer Netherlands, Dordrecht, pp. 3-21.
    Ayub, R.A., Reis, L., Bosetto, L., Lopes, P.Z., Galvao, C.W., Etto, R.M., 2018. Brassinosteroid plays a role on pink stage for receptor and transcription factors involved in strawberry fruit ripening. Plant. Growth Regul. 84, 159-167.
    Bai, Q., Huang, Y., Shen, Y., 2021. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. Front. Plant Sci. 11, 2020.
    Bemer, M., Karlova, R., Ballester, A.R., Tikunov, Y.M., Bovy, A.G., Wolters-Arts, M., Rossetto Pde, B., Angenent, G.C., de Maagd, R.A., 2012. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24, 4437-4451.
    Bennett, J., Meiyalaghan, S., Nguyen, H.M., Boldingh, H., Cooney, J., Elborough, C., Araujo, L.D., Barrell, P., Lin-Wang, K., Plunkett, B.J., et al., 2023. Exogenous abscisic acid and sugar induce a cascade of ripening events associated with anthocyanin accumulation in cultured Pinot Noir grape berries. Front. Plant Sci. 14, 1324675.
    Bian, H., Song, P., Gao, Y., Deng, Z., Huang, C., Yu, L., Wang, H., Ye, B., Cai, Z., Pan, Y., et al., 2024. The m6A reader SlYTH2 negatively regulates tomato fruit aroma by impeding the translation process. Proc. Natl. Acad. Sci. U. S. A. 121(28), e2405100121.
    Bianchetti, R., Bellora, N., de Haro, L.A., Zuccarelli, R., Rosado, D., Freschi, L., Rossi, M., Bermudez, L., 2022. Phytochrome-mediated light perception affects fruit development and ripening through epigenetic mechanisms. Front. Plant Sci. 13, 870974.
    Bottcher, C., Keyzers, R.A., Boss, P.K., Davies, C., 2010. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. J. Exp. Bot. 61, 3615-3625.
    Bradbury, L.M.T., Fitzgerald, T.L., Henry, R.J., Jin, Q., Waters, D.L.E., 2005a. The gene for fragrance in rice. Plant Biotechnol. J. 3, 363-370.
    Bradbury, L.M.T., Henry, R.J., Jin, Q., Reinke, R.F., Waters, D.L.E., 2005b. A perfect marker for fragrance genotyping in rice. Mol. Breed. 16, 279-283.
    Brandt, S., Pek, Z., Barna, E., Lugasi, A., Helyes, L., 2006. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agric. 86, 568-572.
    Brisou, G., Piquerez, S.J.M., Minoia, S., Marcel, F., Cornille, A., Carriero, F., Boualem, A., Bendahmane, A., 2021. Induced mutations in SlE8 and SlACO1 control tomato fruit maturation and shelf-life. J. Exp. Bot. 72, 6920-6932.
    Cai, J., Mo, X., Wen, C., Gao, Z., Chen, X., Xue, C., 2022. FvMYB79 positively regulates strawberry fruit softening via transcriptional activation of FvPME38. Int. J. Mol. Sci. 23, 101.
    Carrasco-Orellana, C., Stappung, Y., Mendez-Yanez, A., Allan, A.C., Espley, R.V., Plunkett, B.J., Moya-Leon, M.A., Herrera, R., 2018. Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit. Sci. Rep. 8, 10524.
    Castillejo, C., Waurich, V., Wagner, H., Ramos, R., Oiza, N., Munoz, P., Trivino, J.C., Caruana, J., Liu, Z., Cobo, N., Hardigan, M.A., et al., 2020. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit. Plant Cell 32, 3723-3749.
    Chen, J., Mao, L., Lu, W., Ying, T., Luo, Z., 2016. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Planta 243, 183-197.
    Chai, Y.-m., Zhang, Q., Tian, L., Li, C.-L., Xing, Y., Qin, L., Shen, Y.-Y., 2013. Brassinosteroid is involved in strawberry fruit ripening. Plant. Growth Regul. 69, 63-69.
    Chen, K., Li, G.-J., Bressan, R.A., Song, C.-P., Zhu, J.-K., Zhao, Y., 2020. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62, 25-54.
    Cherian, S., Figueroa, C.R., Nair, H., 2014. ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. J. Exp. Bot. 65, 4705-4722.
    Chung, M.-Y., Vrebalov, J., Alba, R., Lee, J., McQuinn, R., Chung, J.-D., Klein, P., Giovannoni, J., 2010. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J. 64, 936-947.
    Cohen, J.D., 1996. In vitro tomato fruit cultures demonstrate a role for indole-3-acetic acid in regulating fruit ripening. J. Am. Soc. Hortic. Sci. 121, 520-524.
    Davies, C., Boss, P.K., Robinson, S.P., 1997. Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol. 115, 1155-1161.
    Davies, K., Grierson, D., Edwards, R., Hobson, G., 1991. Salt-stress Induces Partial Ripening of the nor Tomato Mutant but Expression of only some Ripening-Related Genes. J. Plant Physiol. 139, 140-145.
    Deluc, L., Bogs, J., Walker, A.R., Ferrier, T., Decendit, A., Merillon, J.-M., Robinson, S.P., Barrieu, F.o., 2008. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol. 147, 2041-2053.
    Deng, H., Chen, Y., Liu, Z., Liu, Z., Shu, P., Wang, R., Hao, Y., Su, D., Pirrello, J., Liu, Y., et al., 2022. SlERF.F12 modulates the transition to ripening in tomato fruit by recruiting the co-repressor TOPLESS and histone deacetylases to repress key ripening genes. Plant Cell 34, 1250-1272.
    Dhalaria, R., Verma, R., Kumar, D., Puri, S., Tapwal, A., Kumar, V., Nepovimova, E., Kuca, K., 2020. Bioactive compounds of edible fruits with their anti-aging properties: a comprehensive review to prolong human life. Antioxidants (Basel) 9, 1123.
    Ding, X., Liu, X., Jiang, G., Li, Z., Song, Y., Zhang, D., Jiang, Y., Duan, X., 2022. SlJMJ7 orchestrates tomato fruit ripening via crosstalk between H3K4me3 and DML2-mediated DNA demethylation. New Phytol. 233, 1202-1219.
    Dostal, H.C., Leopold, A.C., 1967. Gibberellin delays ripening of tomatoes. Science 158, 1579-1580.
    Elitzur, T., Yakir, E., Quansah, L., Zhangjun, F., Vrebalov, J., Khayat, E., Giovannoni, J.J., Friedman, H., 2016. Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security. Plant Physiol. 171, 380-391.
    Fan, X., Mattheis, J.P., Fellman, J.K., 1998. A role for jasmonates in climacteric fruit ripening. Planta 204, 444-449.
    Feng, K., Hou, X.L., Xing, G.M., Liu, J.X., Duan, A.Q., Xu, Z.S., Li, M.Y., Zhuang, J., Xiong, A.S., 2020. Advances in AP2/ERF super-family transcription factors in plant. Crit. Rev. Biotechnol. 40, 750-776.
    Fenn, M.A., Giovannoni, J.J., 2021. Phytohormones in fruit development and maturation. Plant J. 105, 446-458.
    Fujisawa, M., Shima, Y., Higuchi, N., Nakano, T., Koyama, Y., Kasumi, T., Ito, Y., 2012. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta 235, 1107-1122.
    Fujisawa, M., Shima, Y., Nakagawa, H., Kitagawa, M., Kimbara, J., Nakano, T., Kasumi, T., Ito, Y., 2014. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell 26, 89-101.
    Gambhir, P., Singh, V., Parida, A., Raghuvanshi, U., Kumar, R., Sharma, A.K., 2022. Ethylene response factor ERF.D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening. Plant Physiol. 190, 2775-2796.
    Gao, C., 2021a. Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635.
    Gao, Y., Fan, Z.-Q., Zhang, Q., Li, H.-L., Liu, G.-S., Jing, Y., Zhang, Y.-P., Zhu, B.-Z., Zhu, H.-L., Chen, J.-Y., et al., 2021b. A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening. Plant J. 108, 1317-1331.
    Gao, Y., Lin, Y., Xu, M., Bian, H., Zhang, C., Wang, J., Wang, H., Xu, Y., Niu, Q., Zuo, J., et al., 2022. The role and interaction between transcription factor NAC-NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flavor volatiles. New Phytol. 235, 1913-1926.
    Gao, Y., Wei, W., Fan, Z., Zhao, X., Zhang, Y., Jing, Y., Zhu, B., Zhu, H., Shan, W., Chen, J., et al., 2020. Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. J. Exp. Bot. 71, 3560-3574.
    Gao, Y., Wei, W., Zhao, X., Tan, X., Fan, Z., Zhang, Y., Jing, Y., Meng, L., Zhu, B., Zhu, H., et al., 2018. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Hortic. Res. 5, 75.
    Gatto, A., Chepeliev, M., 2024. Global food loss and waste estimates show increasing nutritional and environmental pressures. Nat. Food 5, 136-147.
    Giovannoni, J., Nguyen, C., Ampofo, B., Zhong, S., Fei, Z., 2017. The epigenome and transcriptional dynamics of fruit ripening. Annu. Rev. Plant Biol. 68, 61-84.
    Guo, J.-E., Hu, Z., Yu, X., Li, A., Li, F., Wang, Y., Tian, S., Chen, G., 2018. A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Rep. 37, 125-135.
    Guo, J.-E., Hu, Z., Zhu, M., Li, F., Zhu, Z., Lu, Y., Chen, G., 2017. The tomato histone deacetylase SlHDA1 contributes to the repression of fruit ripening and carotenoid accumulation. Sci. Rep. 7, 7930.
    Han, Y., Chen, C., Yan, Z., Li, J., Wang, Y., 2019. The methyl jasmonate accelerates the strawberry fruits ripening process. Sci. Hortic. 249, 250-256.
    Hao, Y., Hu, G., Breitel, D., Liu, M., Mila, I., Frasse, P., Fu, Y., Aharoni, A., Bouzayen, M., Zouine, M., 2015. Auxin response factor SlARF2 is an essential component of the regulatory mechanism controlling fruit ripening in tomato. PLoS Genet. 11, e1005649.
    He, J., Meng, S., Zhao, T., Xing, G., Yang, S., Li, Y., Guan, R., Lu, J., Wang, Y., Xia, Q., et al., 2017. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor. Appl. Genet. 130, 2327-2343.
    Hichri, I., Heppel, S.C., Pillet, J., Leon, C., Czemmel, S., Delrot, S., Lauvergeat, V., Bogs, J., 2010. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol. Plant 3, 509-523.
    Hoogstrate, S.W., van Bussel, L.J., Cristescu, S.M., Cator, E., Mariani, C., Vriezen, W.H., Rieu, I., 2014. Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening. Front. Plant Sci. 5, 466.
    Hu, C., Sheng, O., Deng, G., He, W., Dong, T., Yang, Q., Dou, T., Li, C., Gao, H., Liu, S., Yi, G., Bi, F., 2021. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit. Plant Biotechnol. J. 19, 654-656.
    Hu, K., Geng, M., Ma, L., Yao, G., Zhang, M., Zhang, H., 2024. The H2S-responsive transcription factor ERF.D3 regulates tomato abscisic acid metabolism, leaf senescence, and fruit ripening. Plant Physiol. 197, kiae560.
    Hu, S., Liu, L., Li, S., Shao, Z., Meng, F., Liu, H., Duan, W., Liang, D., Zhu, C., Xu, T., et al., 2020. Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato. Hortic. Res. 7,163.
    Huang, W., Hu, N., Xiao, Z., Qiu, Y., Yang, Y., Yang, J., Mao, X., Wang, Y., Li, Z., Guo, H., 2022. A molecular framework of ethylene-mediated fruit growth and ripening processes in tomato. Plant Cell 34, 3280-3300.
    Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., Shima, Y., Nakamura, N., Kotake-Nara, E., Kawasaki, S., Toki, S., 2017. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nat. Plants 3, 866-874.
    Ji, K., Chen, P., Sun, L., Wang, Y., Dai, S., Li, Q., Li, P., Sun, Y., Wu, Y., Duan, C., et al., 2012. Non-climacteric ripening in strawberry fruit is linked to ABA, FaNCED2 and FaCYP707A1. Funct. Plant Biol. 39, 351-357.
    Ji, K., Kai, W., Zhao, B., Sun, Y., Yuan, B., Dai, S., Li, Q., Chen, P., Wang, Y., Pei, Y., et al., 2014. SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening. J. Exp. Bot. 65, 5243-5255.
    Ji, Y., Wang, A., 2023. Recent advances in epigenetic triggering of climacteric fruit ripening. Plant Physiol. 192, 1711-1717.
    Jia, H.-F., Chai, Y.-M., Li, C.-L., Lu, D., Luo, J.-J., Qin, L., Shen, Y.-Y., 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening plant physiol. 157, 188-199.
    Jia, H., Wang, Y., Sun, M., Li, B., Han, Y., Zhao, Y., Li, X., Ding, N., Li, C., Ji, W., Jia, W., 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol. 198, 453-465.
    Jia, H., Zhang, C., Pervaiz, T., Zhao, P., Liu, Z., Wang, B., Wang, C., Zhang, L., Fang, J., Qian, J., 2016. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea. Funct. Integr. Genomics 16, 79-94.
    Jiang, G.-L., 2015. Molecular marker-assisted breeding: a plant breeder’s review, in: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (Eds.), Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer Cham., pp. 431-472.
    Ju, Y.L., Liu, M., Zhao, H., Meng, J.F., Fang, Y.L., 2016. Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of cabernet sauvignon (Vitis vinifera L.) grape berries. Molecules 21, 1354.
    Kadomura-Ishikawa, Y., Miyawaki, K., Takahashi, A., Masuda, T., Noji, S., 2015a. Light and abscisic acid independently regulated FaMYB10 in Fragaria×ananassa fruit. Planta 241, 953-965.
    Kadomura-Ishikawa, Y., Miyawaki, K., Takahashi, A., Noji, S., 2015b. RNAi-mediated silencing and overexpression of the FaMYB1 gene and its effect on anthocyanin accumulation in strawberry fruit. Biol. Plant. 59, 677-685.
    Karlova, R., Chapman, N., David, K., Angenent, G.C., Seymour, G.B., de Maagd, R.A., 2014. Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot. 65, 4527-4541.
    Karlova, R., Rosin, F.M., Busscher-Lange, J., Parapunova, V., Do, P.T., Fernie, A.R., Fraser, P.D., Baxter, C., Angenent, G.C., de Maagd, R.A., 2011. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23, 923-941.
    Kevany, B.M., Tieman, D.M., Taylor, M.G., Cin, V.D., Klee, H.J., 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J. 51, 458-467.
    Khan, A.S., Singh, Z., 2007. 1-MCP regulates ethylene biosynthesis and fruit softening during ripening of ‘Tegan Blue’ plum. Postharvest Biol. Technol. 43, 298-306.
    Kumar, R., Khurana, A., Sharma, A.K., 2014. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 65, 4561-4575.
    Lanahan, M.B., Yen, H.C., Giovannoni, J.J., Klee, H.J., 1994. The never ripe mutation blocks ethylene perception in tomato. Plant Cell 6, 521-530.
    Lang, Z., Wang, Y., Tang, K., Tang, D., Datsenka, T., Cheng, J., Zhang, Y., Handa, A.K., Zhu, J.K., 2017. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc. Natl. Acad. Sci. U. S. A. 114, e4511-e4519.
    Lee, J.M., Joung, J.G., McQuinn, R., Chung, M.Y., Fei, Z., Tieman, D., Klee, H., Giovannoni, J., 2012. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J. 70, 191-204.
    Li, B.-J., Grierson, D., Shi, Y., Chen, K.-S., 2022a. Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit. Hortic. Res. 9, uhac089.
    Li, C., Lu, X., Xu, J., Liu, Y., 2023. Regulation of fruit ripening by MADS-box transcription factors. Sci. Hortic. 314, 111950.
    Li, H., Wu, H., Qi, Q., Li, H., Li, Z., Chen, S., Ding, Q., Wang, Q., Yan, Z., Gai, Y., et al., 2019a. Gibberellins play a role in regulating tomato fruit ripening. Plant and Cell Physiol. 60, 1619-1629.
    Li, J., Tao, X., Li, L., Mao, L., Luo, Z., Khan, Z.U., Ying, T., 2016a. Comprehensive rna-seq analysis on the regulation of tomato ripening by exogenous auxin. PLoS One 11, e0156453.
    Li, Q., Bu, J., Shu, J., Yu, Z., Tang, L., Huang, S., Guo, T., Mo, J., Luo, S., Solangi, G.S., et al., 2019b. Colletotrichum species associated with mango in southern China. Sci. Rep. 9, 18891.
    Li, S., Chen, K., Grierson, D., 2021. Molecular and hormonal mechanisms regulating fleshy fruit ripening. Cells 10, 1136.
    Li, S., Xu, H., Ju, Z., Cao, D., Zhu, H., Fu, D., Grierson, D., Qin, G., Luo, Y., Zhu, B., 2018a. The RIN-MC fusion of MADS-box transcription factors has transcriptional activity and modulates expression of many ripening genes. Plant Physiol. 176, 891-909.
    Li, T., Jiang, Z., Zhang, L., Tan, D., Wei, Y., Yuan, H., Li, T., Wang, A., 2016b. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant J. 88, 735-748.
    Li, T., Xu, Y., Zhang, L., Ji, Y., Tan, D., Yuan, H., Wang, A., 2017. The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell 29, 1316-1334.
    Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., Xu, C., 2018b. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160-1163.
    Li, X., Wang, X., Zhang, Y., Zhang, A., You, C.-X., 2022b. Regulation of fleshy fruit ripening: from transcription factors to epigenetic modifications. Hortic. Res. 9, uhac013.
    Li, Y., Xu, P., Chen, G., Wu, J., Liu, Z., Lian, H., 2020b. FvbHLH9 Functions as a Positive Regulator of Anthocyanin Biosynthesis by Forming a HY5-bHLH9 Transcription Complex in Strawberry Fruits. Plant Cell Physiol. 61, 826-837.
    Li, Z., Jiang, G., Liu, X., Ding, X., Zhang, D., Wang, X., Zhou, Y., Yan, H., Li, T., Wu, K., et al., 2020c. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. New Phytol. 227, 1138-1156.
    Li, Z., Zeng, J., Zhou, Y., Ding, X., Jiang, G., Wu, K., Jiang, Y., Duan, X., 2024. Histone H3K27 demethylase SlJMJ3 modulates fruit ripening in tomato. Plant Physiol. 195, 2727-2742.
    Liang, Q., Deng, H., Li, Y., Liu, Z., Shu, P., Fu, R., Zhang, Y., Pirrello, J., Zhang, Y., Grierson, D., et al., 2020a. Like Heterochromatin Protein 1b represses fruit ripening via regulating the H3K27me3 levels in ripening-related genes in tomato. New Phytol. 227, 485-497.
    Liang, Z., Riaz, A., Chachar, S., Ding, Y., Du, H., Gu, X., 2020b. Epigenetic modifications of mRNA and DNA in plants. Mol. Plant 13, 14-30.
    Lin-Wang, K., McGhie, T.K., Wang, M., Liu, Y., Warren, B., Storey, R., Espley, R.V., Allan, A.C., 2014. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5, 651.
    Liu, C., Lu, F., Cui, X., Cao, X., 2010. Histone methylation in higher plants. Annu. Rev. Plant Biol. 61, 395-420.
    Liu, D., Chen, X., Liu, J., Ye, J., Guo, Z., 2012. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J. Exp. Bot. 63, 3899-3911.
    Liu, GS., Huang, H., Grierson, D., Gao, Y., Ji, X., Peng, ZZ., Li, HL., Niu, XL., Jia, W., He, JL., et al., 2024. NAC transcription factor SlNOR-like1 plays a dual regulatory role in tomato fruit cuticle formation. J. Exp. Bot. 75, 1903-1918.
    Liu, M., Pirrello, J., Chervin, C., Roustan, J.P., Bouzayen, M., 2015a. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol. 169, 2380-2390.
    Liu, M., Pirrello, J., Kesari, R., Mila, I., Roustan, J.P., Li, Z., Latche, A., Pech, J.C., Bouzayen, M., Regad, F., 2013. A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. Plant J. 76, 406-419.
    Liu, R., How-Kit, A., Stammitti, L., Teyssier, E., Rolin, D., Mortain-Bertrand, A., Halle, S., Liu, M., Kong, J., Wu, C., et al., 2015b. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc. Natl. Acad. Sci. U. S. A. 112, 10804-10809.
    Liu, X., Yang, S., Zhao, M., Luo, M., Yu, C.W., Chen, C.Y., Tai, R., Wu, K., 2014. Transcriptional repression by histone deacetylases in plants. Mol. Plant 7, 764-772.
    Liu, Y., Ye, Y., Wang, Y., Jiang, L., Yue, M., Tang, L., Jin, M., Zhang, Y., Lin, Y., Tang, H., 2022a. B-Box transcription factor FaBBX22 promotes light-induced anthocyanin accumulation in strawberry (Fragaria×ananassa). Int. J. Mol. Sci. 23, 7757.
    Liu, Z., Wu, X., Liu, H., Zhang, M., Liao, W., 2022b. DNA methylation in tomato fruit ripening. Physiol. Plant. 174, e13627.
    Lou, H., Li, S., Shi, Z., Zou, Y., Zhang, Y., Huang, X., Yang, D., Yang, Y., Li, Z., Xu, C., 2025. Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell 188, 530-549.
    Lu, W., Chen, J., Ren, X., Yuan, J., Han, X., Mao, L., Ying, T., Luo, Z., 2018. One novel strawberry MADS-box transcription factor FaMADS1a acts as a negative regulator in fruit ripening. Sci. Hortic. 227, 124-131.
    Ma, N., Feng, H., Meng, X., Li, D., Yang, D., Wu, C., Meng, Q., 2014. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol. 14, 351.
    Martin-Pizarro, C., Vallarino, J.G., Osorio, S., Meco, V., Urrutia, M., Pillet, J., Casanal, A., Merchante, C., Amaya, I., Willmitzer, L., et al., 2021. The NAC transcription factor FaRIF controls fruit ripening in strawberry. Plant Cell 33, 1574-1593.
    Medina-Puche, L., Cumplido-Laso, G., Amil-Ruiz, F., Hoffmann, T., Ring, L., Rodriguez-Franco, A., Caballero, J.L., Schwab, W., Munoz-Blanco, J., Blanco-Portales, R., 2013. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria×ananassa fruits. J. Exp. Bot. 65, 401-417.
    Medina-Puche, L., Molina-Hidalgo, F.J., Boersma, M., Schuurink, R.C., Lopez-Vidriero, I., Solano, R., Franco-Zorrilla, J.-M., Caballero, J.L., Blanco-Portales, R., Munoz-Blanco, J., 2015. An R2R3-MYB transcription factor regulates eugenol production in ripe strawberry fruit receptacles. Plant Physiol. 168, 598-614.
    Meng, C., Yang, D., Ma, X., Zhao, W., Liang, X., Ma, N., Meng, Q., 2016. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. J. Plant Physiol. 193, 88-96.
    Meng, F., Liu, H., Hu, S., Jia, C., Zhang, M., Li, S., Li, Y., Lin, J., Jian, Y., Wang, M., et al., 2023. The brassinosteroid signaling component SlBZR1 promotes tomato fruit ripening and carotenoid accumulation. J. Integr. Plant Biol. 65, 1794-1813.
    Miura, K., Ashikari, M., Matsuoka, M., 2011. The role of QTLs in the breeding of high-yielding rice. Trends plant sci. 16, 319-326.
    Molina-Hidalgo, F.J., Medina-Puche, L., Canete-Gomez, C., Franco-Zorrilla, J.M., Lopez-Vidriero, I., Solano, R., Caballero, J.L., Rodriguez-Franco, A., Blanco-Portales, R., Munoz-Blanco, J., et al., 2017. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. J. Exp. Bot. 68, 4529-4543.
    Moreno Fde, L., Blanch, G.P., Flores, G., del Castillo, M.L., 2010. Impact of postharvest methyl jasmonate treatment on the volatile composition and flavonol content of strawberries. J. Sci. Food Agric. 90, 989-994.
    Mou, W., Li, D., Luo, Z., Li, L., Mao, L., Ying, T., 2018. SlAREB1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening. Plant Sci. 276, 239-249.
    Moyano, E., Martinez-Rivas, F.J., Blanco-Portales, R., Molina-Hidalgo, F.J., Ric-Varas, P., Matas-Arroyo, A.J., Caballero, J.L., Munoz-Blanco, J., Rodriguez-Franco, A., 2018. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria×ananassa fruits. PLoS One 13, e0196953.
    Najwa, R., Azlan, A., 2017. Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods. Int. Food Res. J. 24, 726-733.
    Neugebauer, M.E., Hsu, A., Arbab, M., Krasnow, N.A., McElroy, A.N., Pandey, S., Doman, J.L., Huang, T.P., Raguram, A., Banskota, S., et al., 2023. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673-685.
    Oeller, P.W., Lu, M.-W., Taylor, L.P., Pike, D.A., Theologis, A.A., 1991. Reversible inhibition of tomato fruit senescence by antisense rna. Science 254, 437-439.
    Park, M.H., Malka, S.K., 2022. Gibberellin delays metabolic shift during tomato ripening by inducing auxin signaling. Front. Plant Sci. 13, 1045761.
    Peng, Z., Liu, G., Li, H., Wang, Y., Gao, H., Jemric, T., Fu, D., 2022. Molecular and genetic events determining the softening of fleshy fruits: a comprehensive review. Int. J. Mol. Sci. 23, 12482.
    Perez, A.G., Sanz, C., Olias, R., Olias, J.M., 1997. Effect of methyl jasmonate on in vitro strawberry ripening. J. Agric. Food Chem. 45, 3733-3737.
    Perotti, M.F., Pose, D., Martin-Pizarro, C., 2023. Non-climacteric fruit development and ripening regulation: ‘the phytohormones show’. J. Exp. Bot. 74, 6237-6253.
    Petrasch, S., Knapp, S.J., van Kan, J.A.L., Blanco-Ulate, B., 2019. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol. Plant Pathol. 20, 877-892.
    Qin, X., Zeevaart, J.A.D., 1999. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. U. S. A. 96, 15354-15361.
    Sandhu, A.K., Gray, D.J., Lu, J., Gu, L., 2011. Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chem. 126, 982-988.
    Satekge, T.K., Magwaza, L.S., 2022. Postharvest application of 1-methylcyclopropene (1-MCP) on climacteric fruits: factors affecting efficacy. Int. J. Fruit Sci. 22, 595-607.
    Seymour, G.B., Chapman, N.H., Chew, B.L., Rose, J.K.C., 2013. Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnol. J. 11, 269-278.
    Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., Shi, Y., 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941-953.
    Shima, Y., Fujisawa, M., Kitagawa, M., Nakano, T., Kimbara, J., Nakamura, N., Shiina, T., Sugiyama, J., Nakamura, T., Kasumi, T., et al., 2014. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Biosci. Biotechnol. Biochem. 78, 231-237.
    Shima, Y., Kitagawa, M., Fujisawa, M., Nakano, T., Kato, H., Kimbara, J., Kasumi, T., Ito, Y., 2013. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Plant Mol. Biol. 82, 427-438.
    Shin, J.-H., Mila, I., Liu, M., Rodrigues, M.A., Vernoux, T., Pirrello, J., Bouzayen, M., 2019. The RIN-regulated Small Auxin-Up RNA SAUR69 is involved in the unripe-to-ripe phase transition of tomato fruit via enhancement of the sensitivity to ethylene. New Phytol. 222, 820-836.
    Spindel, J.E., Begum, H., Akdemir, D., Collard, B., Redona, E., Jannink, J.L., McCouch, S., 2016. Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116, 395-408.
    Su, D., Liu, K., Yu, Z., Li, Y., Zhang, Y., Zhu, Y., Wu, Y., He, H., Zeng, X., Chen, H., et al., 2023. Genome-wide characterization of the tomato GASA family identifies SlGASA1 as a repressor of fruit ripening. Hortic. Res. 10, uhac222.
    Su, L., Diretto, G., Purgatto, E., Danoun, S., Zouine, M., Li, Z., Roustan, J.-P., Bouzayen, M., Giuliano, G., Chervin, C., 2015. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol. 15, 114.
    Tacken, E.J., Ireland, H.S., Wang, Y.-Y., Putterill, J., Schaffer, R.J., 2012. Apple EIN3 BINDING F-box 1 inhibits the activity of three apple EIN3-like transcription factors. AoB Plants 2012, pls034.
    Tan, Y., Wen, B., Xu, L., Zong, X., Sun, Y., Wei, G., Wei, H., 2023. High temperature inhibited the accumulation of anthocyanin by promoting ABA catabolism in sweet cherry fruits. Front. Plant Sci. 14, 1079292.
    Tang, D., Gallusci, P., Lang, Z., 2020. Fruit development and epigenetic modifications. New Phytol. 228, 839-844.
    Tang, J., Chen, S., Jia, G., 2023. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. Plant Commun. 4, 100546.
    Tang, R., Duan, X., Zhou, L., Gao, G., Liu, J., Wang, Y., Shao, X., Qin, G., 2024. The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry. Nature Commun. 15, 10912.
    Trainotti, L., Tadiello, A., Casadoro, G., 2007. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J. Exp. Bot. 58, 3299-3308.
    Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., Zhang, Y., 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-816.
    Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W., Giovannoni, J., 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296, 343-346.
    Wang, R., Lammers, M., Tikunov, Y., Bovy, A.G., Angenent, G.C., de Maagd, R.A., 2020. The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners. Plant Sci. 294, 110436.
    Wang, R., Tavano, E., Lammers, M., Martinelli, A.P., Angenent, G.C., de Maagd, R.A., 2019. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci. Rep. 9, 1696.
    Wang, T., Zhang, J., Zhang, S., Gong, Y., Wang, N., Zhang, Z., Chen, X., 2024. Auxin responsive factor MdARF17 promotes ethylene synthesis in apple fruits by activating MdERF003 expression. Plant Cell Rep. 43, 212.
    Wang, W., Fan, D., Hao, Q., Jia, W., 2022. Signal transduction in non-climacteric fruit ripening. Hortic. Res. 9, uhac190.
    Wang, X., Meng, J., Deng, L., Wang, Y., Liu, H., Yao, J.L., Nieuwenhuizen, N.J., Wang, Z., Zeng, W., 2021. Diverse functions of IAA-Leucine Resistant PpILR1 provide a genic basis for auxin-ethylene crosstalk during peach fruit ripening. Front. Plant Sci. 12, 655758.
    Watkins, C.B., 2006. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 24, 389-409.
    Wu, M., Liu, K., Li, H., Li, Y., Zhu, Y., Su, D., Zhang, Y., Deng, H., Wang, Y., Liu, M., 2024. Gibberellins involved in fruit ripening and softening by mediating multiple hormonal signals in tomato. Hortic. Res. 11, uhad275.
    Wei, W., Yang, Y.-y., Wu, C.-j., Kuang, J.-f., Chen, J.-y., Lu, W.-j., Shan, W., 2023. MaMADS1-MaNAC083 transcriptional regulatory cascade regulates ethylene biosynthesis during banana fruit ripening. Hortic. Res. 10, uhad177.
    Wu, Q., Bai, J., Tao, X., Mou, W., Luo, Z., Mao, L., Ban, Z., Ying, T., Li, L., 2018. Synergistic effect of abscisic acid and ethylene on color development in tomato (Solanum lycopersicum L.) fruit. Sci. Hortic. 235, 169-180.
    Yang, M., Wang, L., Belwal, T., Zhang, X., Lu, H., Chen, C., Li, L., 2019. Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in grape berry of Vitis vinifera cv. Kyoho. Molecules 25, 12.
    Yang, S.-F., Hoffman, N.E., 2003. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 155-189.
    Yang, S., Zhou, J., Watkins, C.B., Wu, C., Feng, Y., Zhao, X., Xue, Z., Kou, X., 2021. NAC transcription factors SNAC4 and SNAC9 synergistically regulate tomato fruit ripening by affecting expression of genes involved in ethylene and abscisic acid metabolism and signal transduction. Postharvest Biol. Technol. 178, 111555.
    Yang, T., Deng, L., Wang, Q., Sun, C., Ali, M., Wu, F., Zhai, H., Xu, Q., Xin, P., Cheng, S., et al., 2024. Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate jasmonate-mediated defense during fruit ripening. Mol. Plant 17, 509-512.
    You, S., Wu, Y., Li, W., Liu, X., Tang, Q., Huang, F., Li, Y., Wang, H., Liu, M., Zhang, Y., 2024. SlERF.G3-Like mediates a hierarchical transcriptional cascade to regulate ripening and metabolic changes in tomato fruit. Plant Biotechnol. J. 22, 165-180.
    Yu, Y., Li, W., Liu, Y., Liu, Y., Zhang, Q., Ouyang, Y., Ding, W., Xue, Y., Zou, Y., Yan, J., et al., 2025. A zea genus-specific micropeptide controls kernel dehydration in maize. Cell 188, 44-59.
    Yue, H., Nie, X., Yan, Z., Weining, S., 2019. N6-methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnol. J. 17, 1194-1208.
    Yue, M., Jiang, L., Zhang, N., Zhang, L., Liu, Y., Wang, Y., Li, M., Lin, Y., Zhang, Y., Zhang, Y., et al., 2022. Importance of FaWRKY71 in strawberry (Fragaria×ananassa) fruit ripening. Int. J. Mol. Sci. 23, 12483.
    Yue, P., Lu, Q., Liu, Z., Lv, T., Li, X., Bu, H., Liu, W., Xu, Y., Yuan, H., Wang, A., 2020. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. New Phytol. 226, 1781-1795.
    Yue, Q., Xie, Y., Yang, X., Zhang, Y., Li, Z., Liu, Y., Cheng, P., Zhang, R., Yu, Y., Wang, X., et al., 2025. An indel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening. Plant Cell 37, koaf007.
    Zarembinski, T.I., Theologis, A., 1994. Ethylene biosynthesis and action: a case of conservation. Plant Mol. Biol. 26, 1579-1597.
    Zeng, J., Jiang, G., Liang, H., Yan, H., Kong, X., Duan, X., Li, Z., 2023. Histone demethylase MaJMJ15 is involved in the regulation of postharvest banana fruit ripening. Food Chem. 407, 135102.
    Zhang, H., Lang, Z., Zhu, J.-K., 2018a. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489-506.
    Zhang, J., Lyu, H., Chen, J., Cao, X., Du, R., Ma, L., Wang, N., Zhu, Z., Rao, J., Wang, J., et al., 2024a. Releasing a sugar brake generates sweeter tomato without yield penalty. Nature 635, 647-656.
    Zhang, J., Ma, Y., Dong, C., Terry, L.A., Watkins, C.B., Yu, Z., Cheng, Z.-M., 2020. Meta-analysis of the effects of 1-methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Hortic. Res. 7, 208.
    Zhang, M., Leng, P., Zhang, G., Li, X., 2009a. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J. Plant Physiol. 166, 1241-1252.
    Zhang, M., Yuan, B., Leng, P., 2009b. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot. 60, 1579-1588.
    Zhang, S.H., Sun, J.H., Dong, Y.H., Shen, Y.Y., Li, C.L., Li, Y.Z., Guo, J.X., 2015. Enzymatic and functional analysis of -glucosidase FaBG1 during strawberry fruit ripening. J. Hortic. Sci. Biotechnol. 89, 733-739.
    Zhang, Y., Yin, X., Xiao, Y., Zhang, Z., Li, S., Liu, X., Zhang, B., Yang, X., Grierson, D., Jiang, G., et al., 2018b. An ETHYLENE RESPONSE FACTOR-MYB transcription complex regulates furaneol biosynthesis by activating QUINONE OXIDOREDUCTASE expression in strawberry. Plant Physiol. 178, 189-201.
    Zhang, Z., Zou, W., Lin, P., Wang, Z., Chen, Y., Yang, X., Zhao, W., Zhang, Y., Wang, D., Que, Y., et al., 2024b. Evolution and function of MADS-box transcription factors in plants. Int. J. Mol. Sci. 25, 13278.
    Zhao, W., Gao, L., Li, Y., Wang, M., Zhang, L., Zhao, L., 2020. Yellow-fruited phenotype is caused by 573 bp insertion at 5' UTR of YFT1 allele in yft1 mutant tomato. Plant Sci. 300, 110637.
    Zhou, L., Gao, G., Tang, R., Liu, J., Wang, Y., Liang, Z., Tian, S., Qin, G., 2025. Redox modification of m6A demethylase SlALKBH2 in tomato regulates fruit ripening. Nat. Plants 11, 218-233.
    Zhou, L., Tang, R., Li, X., Tian, S., Li, B., Qin, G., 2021. N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biol. 22, 168.
    Zhou, L., Tian, S., Qin, G., 2019. RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biol. 20, 156.
    Zhou, Y., Li, Z., Su, X., Hou, H., Jiang, Y., Duan, X., Qu, H., Jiang, G., 2024. Histone deacetylase SlHDA7 impacts fruit ripening and shelf life in tomato. Hortic. Res. 11, uhae234.
    Zhu, M., Chen, G., Zhou, S., Tu, Y., Wang, Y., Dong, T., Hu, Z., 2013. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol. 55, 119-135.
    Zuo, J., Grierson, D., Courtney, L.T., Wang, Y., Gao, L., Zhao, X., Zhu, B., Luo, Y., Wang, Q., Giovannoni, J.J., 2020. Relationships between genome methylation, levels of non-coding RNAs, mRNAs and metabolites in ripening tomato fruit. Plant J. 103, 980-994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (56) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return