|
Abraham, B.K., Fritz, P., McClellan, M., Hauptvogel, P., Athelogou, M., Brauch, H., 2005. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin. Cancer Res. 11, 1154-1159.
|
|
Aird, R., Wills, J., Roby, K.F., Benezech, C., Stimson, R.H., Wabitsch, M., Pollard, J.W., Finch, A., Michailidou, Z., 2022. Hypoxia-driven metabolic reprogramming of adipocytes fuels cancer cell proliferation. Front. Endocrinol. (Lausanne) 13, 989523.
|
|
Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F., 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100, 3983-3988.
|
|
Annunziato, S., Sun, T., Tchorz, J.S., 2022. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease. Hepatology 76, 888-899.
|
|
Aupperlee, M.D., Leipprandt, J.R., Bennett, J.M., Schwartz, R.C., Haslam, S.Z., 2013. Amphiregulin mediates progesterone-induced mammary ductal development during puberty. Breast Cancer Res. 15, R44.
|
|
Aurora, A.B., Olson, E.N., 2014. Immune modulation of stem cells and regeneration. Cell Stem Cell 15, 14-25.
|
|
Bandyopadhyay, G.K., Hwang, S., Imagawa, W., Nandi, S., 1993. Role of polyunsaturated fatty acids as signal transducers: amplification of signals from growth factor receptors by fatty acids in mammary epithelial cells. Prostaglandins Leukot. Essent. Fatty Acids 48, 71-78.
|
|
Bandyopadhyay, G.K., Lee, L.Y., Guzman, R.C., Nandi, S., 1995. Effect of reproductive states on lipid mobilization and linoleic acid metabolism in mammary glands. Lipids 30, 155-162.
|
|
Barker, N., Huch, M., Kujala, P., van de Wetering, M., Snippert, H.J., van Es, J.H., Sato, T., Stange, D.E., Begthel, H., van den Born, M., et al., 2010. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25-36.
|
|
Barker, N., Rookmaaker, M.B., Kujala, P., Ng, A., Leushacke, M., Snippert, H., van de Wetering, M., Tan, S., Van Es, J.H., Huch, M., et al., 2012. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540-552.
|
|
Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al., 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007.
|
|
Barrott, J.J., Cash, G.M., Smith, A.P., Barrow, J.R., Murtaugh, L.C., 2011. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc. Natl. Acad. Sci. U. S. A. 108, 12752-12757.
|
|
Bartucci, M., Dattilo, R., Moriconi, C., Pagliuca, A., Mottolese, M., Federici, G., Benedetto, A.D., Todaro, M., Stassi, G., Sperati, F., et al., 2015. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 34, 681-690.
|
|
Beel, A.J., Sanders, C.R., 2008. Substrate specificity of gamma-secretase and other intramembrane proteases. Cell Mol. Life Sci. 65, 1311-1334.
|
|
Bernkopf, D.B., Bruckner, M., Hadjihannas, M.V., Behrens, J., 2019. An aggregon in conductin/axin2 regulates Wnt/β-catenin signaling and holds potential for cancer therapy. Nat. Commun. 10, 4251.
|
|
Bhattacharyya, M., Jariyal, H., Srivastava, A., 2023. Hyaluronic acid: more than a carrier, having an overpowering extracellular and intracellular impact on cancer. Carbohydr. Polym. 317, 121081.
|
|
Boras-Granic, K., Chang, H., Grosschedl, R., Hamel, P.A., 2006. Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Dev. Biol. 295, 219-231.
|
|
Borden, P., Houtz, J., Leach, S.D., Kuruvilla, R., 2013. Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep. 4, 287-301.
|
|
Bouras, T., Pal, B., Vaillant, F., Harburg, G., Asselin-Labat, M.L., Oakes, S.R., Lindeman, G.J., Visvader, J.E., 2008. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3, 429-441.
|
|
Britschgi, A., Duss, S., Kim, S., Couto, J.P., Brinkhaus, H., Koren, S., De Silva, D., Mertz, K.D., Kaup, D., Varga, Z., et al., 2017. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature 541, 541-545.
|
|
Bussard, K.M., Smith, G.H., 2012. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo. PLoS ONE 7, e49221.
|
|
Cai, C., Yu, Q.C., Jiang, W., Liu, W., Song, W., Yu, H., Zhang, L., Yang, Y., Zeng, Y.A., 2014. R-spondin1 is a novel hormone mediator for mammary stem cell self-renewal. Genes Dev. 28, 2205-2218.
|
|
Cai, S., Kalisky, T., Sahoo, D., Dalerba, P., Feng, W., Lin, Y., Qian, D., Kong, A., Yu, J., Wang, F., et al., 2017. A quiescent Bcl11b high stem cell population is required for maintenance of the mammary gland. Cell Stem Cell 20, 247-260.
|
|
Celia-Terrassa, T., Liu, D.D., Choudhury, A., Hang, X., Wei, Y., Zamalloa, J., Alfaro-Aco, R., Chakrabarti, R., Jiang, Y.Z., Koh, B.I., et al., 2017. Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis. Nat. Cell Biol. 19, 711-723.
|
|
Centonze, A., Lin, S., Tika, E., Sifrim, A., Fioramonti, M., Malfait, M., Song, Y., Wuidart, A., Van Herck, J., Dannau, A., et al., 2020. Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature 584, 608-613.
|
|
Chakrabarti, R., Celia-Terrassa, T., Kumar, S., Hang, X., Wei, Y., Choudhury, A., Hwang, J., Peng, J., Nixon, B., Grady, J.J., et al., 2018. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science 360, eaan4153.
|
|
Chakrabarti, R., Wei, Y., Hwang, J., Hang, X., Andres Blanco, M., Choudhury, A., Tiede, B., Romano, R.A., DeCoste, C., Mercatali, L., et al., 2014. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling. Nat. Cell Biol. 16, 1004-1015.
|
|
Chakrabarti, R., Wei, Y., Romano, R.A., DeCoste, C., Kang, Y., Sinha, S., 2012. Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells 30, 1496-1508.
|
|
Chang, A., Le, C.P., Walker, A.K., Creed, S.J., Pon, C.K., Albold, S., Carroll, D., Halls, M.L., Lane, J.R., Riedel, B., et al., 2016. β2-Adrenoceptors on tumor cells play a critical role in stress-enhanced metastasis in a mouse model of breast cancer. Brain Behav. Immun. 57, 106-115.
|
|
Chang, C., Goel, H.L., Gao, H., Pursell, B., Shultz, L.D., Greiner, D.L., Ingerpuu, S., Patarroyo, M., Cao, S., Lim, E., et al., 2015. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells. Genes Dev. 29, 1-6.
|
|
Chen, D., Sun, Y., Wei, Y., Zhang, P., Rezaeian, A.H., Teruya-Feldstein, J., Gupta, S., Liang, H., Lin, H.K., Hung, M.C., et al., 2012. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat. Med. 18, 1511-1517.
|
|
Chen, H., Liu, D., Yang, Z., Sun, L., Deng, Q., Yang, S., Qian, L., Guo, L., Yu, M., Hu, M., et al., 2014. Adrenergic signaling promotes angiogenesis through endothelial cell-tumor cell crosstalk. Endocr. Relat. Cancer 21, 783-795.
|
|
Chen, L., Liu, Y.P., Tian, L.F., Li, M., Yang, S., Wang, S., Xu, W., Yan, X.X., 2023. Structural basis of the interaction between human Axin2 and SIAH1 in the Wnt/β-catenin signaling pathway. Biomolecules 13, 647.
|
|
Cho, R.W., Wang, X., Diehn, M., Shedden, K., Chen, G.Y., Sherlock, G., Gurney, A., Lewicki, J., Clarke, M.F., 2008. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 26, 364-371.
|
|
Cismasiu, V.B., Adamo, K., Gecewicz, J., Duque, J., Lin, Q., Avram, D., 2005. BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 24, 6753-6764.
|
|
Clarke, R.B., Anderson, E., Howell, A., Potten, C.S., 2003. Regulation of human breast epithelial stem cells. Cell Prolif. 36 Suppl 1, 45-58.
|
|
Cohen, M.M., Jr., 2003. The hedgehog signaling network. Am. J. Med. Genet. A. 123a, 5-28.
|
|
Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., Inui, M., Montagner, M., Parenti, A.R., Poletti, A., et al., 2011. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759-772.
|
|
D'Souza, B., Miyamoto, A., Weinmaster, G., 2008. The many facets of Notch ligands. Oncogene 27, 5148-5167.
|
|
Damelin, M., Bankovich, A., Bernstein, J., Lucas, J., Chen, L., Williams, S., Park, A., Aguilar, J., Ernstoff, E., Charati, M., et al., 2017. A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci. Transl. Med. 9, eaag2611.
|
|
Deng, L., Shang, L., Bai, S., Chen, J., He, X., Martin-Trevino, R., Chen, S., Li, X.Y., Meng, X., Yu, B., et al., 2014. MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development. Cancer Res. 74, 6648-6660.
|
|
Deome, K.B., Faulkin, L.J., Jr., Bern, H.A., Blair, P.B., 1959. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19, 515-520.
|
|
Djonov, V., Andres, A.C., Ziemiecki, A., 2001. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc. Res. Tech. 52, 182-189.
|
|
dos Santos, C.O., Rebbeck, C., Rozhkova, E., Valentine, A., Samuels, A., Kadiri, L.R., Osten, P., Harris, E.Y., Uren, P.J., Smith, A.D., et al., 2013. Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, 7123-7130.
|
|
Dunphy, K.A., Tao, L., Jerry, D.J., 2010. Mammary epithelial transplant procedure. J. Vis. Exp. 40, 1849.
|
|
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., et al., 2011. Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183.
|
|
Elias, J.J., Pitelka, D.R., Armstrong, R.C., 1973. Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177, 533-547.
|
|
Fajardo, I., Pejler, G., 2003. Human mast cell beta-tryptase is a gelatinase. J. Immunol. 171, 1493-1499.
|
|
Farnie, G., Clarke, R.B., 2007. Mammary stem cells and breast cancer--role of Notch signalling. Stem Cell Rev. 3, 169-175.
|
|
Fata, J.E., Kong, Y.Y., Li, J., Sasaki, T., Irie-Sasaki, J., Moorehead, R.A., Elliott, R., Scully, S., Voura, E.B., Lacey, D.L., et al., 2000. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 41-50.
|
|
Fernandez-Valdivia, R., Mukherjee, A., Creighton, C.J., Buser, A.C., DeMayo, F.J., Edwards, D.P., Lydon, J.P., 2008. Transcriptional response of the murine mammary gland to acute progesterone exposure. Endocrinology 149, 6236-6250.
|
|
Fu, N.Y., Nolan, E., Lindeman, G.J., Visvader, J.E., 2020. Stem cells and the differentiation hierarchy in mammary gland development. Physiol. Rev. 100, 489-523.
|
|
Fu, N.Y., Rios, A.C., Pal, B., Law, C.W., Jamieson, P., Liu, R., Vaillant, F., Jackling, F., Liu, K.H., Smyth, G.K., et al., 2017. Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive. Nat. Cell Biol. 19, 164-176.
|
|
Garcia-Zaragoza, E., Perez-Tavarez, R., Ballester, A., Lafarga, V., Jimenez-Reinoso, A., Ramirez, A., Murillas, R., Gallego, M.I., 2012. Intraepithelial paracrine Hedgehog signaling induces the expansion of ciliated cells that express diverse progenitor cell markers in the basal epithelium of the mouse mammary gland. Dev. Biol. 372, 28-44.
|
|
Ginestier, C., Hur, M.H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., Jacquemier, J., Viens, P., Kleer, C.G., Liu, S., et al., 2007. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555-567.
|
|
Godar, S., Ince, T.A., Bell, G.W., Feldser, D., Donaher, J.L., Bergh, J., Liu, A., Miu, K., Watnick, R.S., Reinhardt, F., et al., 2008. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell 134, 62-73.
|
|
Gouon-Evans, V., Lin, E.Y., Pollard, J.W., 2002. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 4, 155-164.
|
|
Gouon-Evans, V., Pollard, J.W., 2002. Unexpected deposition of brown fat in mammary gland during postnatal development. Mol. Endocrinol. 16, 2618-2627.
|
|
Gu, B., Watanabe, K., Sun, P., Fallahi, M., Dai, X., 2013. Chromatin effector Pygo2 mediates Wnt-notch crosstalk to suppress luminal/alveolar potential of mammary stem and basal cells. Cell Stem Cell 13, 48-61.
|
|
Guo, W., Keckesova, Z., Donaher, J.L., Shibue, T., Tischler, V., Reinhardt, F., Itzkovitz, S., Noske, A., Zurrer-Hardi, U., Bell, G., et al., 2012. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015-1028.
|
|
Gurney, A., Axelrod, F., Bond, C.J., Cain, J., Chartier, C., Donigan, L., Fischer, M., Chaudhari, A., Ji, M., Kapoun, A.M., et al., 2012. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl. Acad. Sci. U. S. A. 109, 11717-11722.
|
|
Hannan, F.M., Elajnaf, T., Vandenberg, L.N., Kennedy, S.H., Thakker, R.V., 2023. Hormonal regulation of mammary gland development and lactation. Nat. Rev. Endocrinol. 19, 46-61.
|
|
Harlan, S.M., Morgan, D.A., Agassandian, K., Guo, D.F., Cassell, M.D., Sigmund, C.D., Mark, A.L., Rahmouni, K., 2011. Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ. Res. 108, 808-812.
|
|
Harrison, H., Farnie, G., Howell, S.J., Rock, R.E., Stylianou, S., Brennan, K.R., Bundred, N.J., Clarke, R.B., 2010. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 70, 709-718.
|
|
Hatsell, S.J., Cowin, P., 2006. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133, 3661-3670.
|
|
Hay, E.D., 1995. An overview of epithelio-mesenchymal transformation. Acta Anat. 154, 8-20.
|
|
Hein, S.M., Haricharan, S., Johnston, A.N., Toneff, M.J., Reddy, J.P., Dong, J., Bu, W., Li, Y., 2016. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress. Oncogene 35, 1461-1467.
|
|
Hens, J.R., Wysolmerski, J.J., 2005. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res. 7, 220-224.
|
|
Huang, J., Zhang, L., Wan, D., Zhou, L., Zheng, S., Lin, S., Qiao, Y., 2021. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target. Ther. 6, 153.
|
|
Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A., Nishida, E., 2012. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J 31, 1109-1122.
|
|
Jaks, V., Barker, N., Kasper, M., van Es, J.H., Snippert, H.J., Clevers, H., Toftgard, R., 2008. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291-1299.
|
|
Jang, G.B., Hong, I.S., Kim, R.J., Lee, S.Y., Park, S.J., Lee, E.S., Park, J.H., Yun, C.H., Chung, J.U., Lee, K.J., et al., 2015a. Wnt/β-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 75, 1691-1702.
|
|
Jang, G.B., Kim, J.Y., Cho, S.D., Park, K.S., Jung, J.Y., Lee, H.Y., Hong, I.S., Nam, J.S., 2015b. Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Sci. Rep. 5, 12465.
|
|
Jiang, B., Zhu, H., Tang, L., Gao, T., Zhou, Y., Gong, F., Tan, Y., Xie, L., Wu, X., Li, Y., 2022. Apatinib inhibits stem properties and malignant biological behaviors of breast cancer stem cells by blocking Wnt/β-catenin signal pathway through downregulating LncRNA ROR. Anticancer Agents Med. Chem. 22, 1723-1734.
|
|
Jiang, L., Li, J., Song, L., 2009. Bmi-1, stem cells and cancer. Acta Biochim. Biophys. Sin. 41, 527-534.
|
|
Jiang, S., Zhang, M., Zhang, Y., Zhou, W., Zhu, T., Ruan, Q., Chen, H., Fang, J., Zhou, F., Sun, J., et al., 2019. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun. Signal. 17, 109.
|
|
Joshi, P.A., Waterhouse, P.D., Kannan, N., Narala, S., Fang, H., Di Grappa, M.A., Jackson, H.W., Penninger, J.M., Eaves, C., Khokha, R., 2015. RANK signaling amplifies WNT-responsive mammary progenitors through R-SPONDIN1. Stem Cell Rep. 5, 31-44.
|
|
Kamiya, A., Hayama, Y., Kato, S., Shimomura, A., Shimomura, T., Irie, K., Kaneko, R., Yanagawa, Y., Kobayashi, K., Ochiya, T., 2019. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289-1305.
|
|
Katayama, Y., Battista, M., Kao, W.M., Hidalgo, A., Peired, A.J., Thomas, S.A., Frenette, P.S., 2006. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407-421.
|
|
Keller, C.R., Ruud, K.F., Martinez, S.R., Li, W., 2022. Identification of the collagen types essential for mammalian breast acinar structures. Gels 8, 837.
|
|
Kiba, T., 2002. The role of the autonomic nervous system in liver regeneration and apoptosis--recent developments. Digestion 66, 79-88.
|
|
Kim, E.J., Jung, H.S., Lu, P., 2013. Pleiotropic functions of fibroblast growth factor signaling in embryonic mammary gland development. J. Mammary Gland Biol. Neoplasia 18, 139-142.
|
|
Kobayashi, T., Naik, S., Nagao, K., 2019. Choreographing immunity in the skin epithelial barrier. Immunity 50, 552-565.
|
|
Kopan, R., Ilagan, M.X., 2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216-233.
|
|
Kordon, E.C., Smith, G.H., 1998. An entire functional mammary gland may comprise the progeny from a single cell. Development 125, 1921-1930.
|
|
LaBarge, M.A., Nelson, C.M., Villadsen, R., Fridriksdottir, A., Ruth, J.R., Stampfer, M.R., Petersen, O.W., Bissell, M.J., 2009. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr. Biol. 1, 70-79.
|
|
Ladoux, A., Peraldi, P., Chignon-Sicard, B., Dani, C., 2021. Distinct shades of adipocytes control the metabolic roles of adipose tissues: from their origins to their relevance for medical applications. Biomedicines 9, 40.
|
|
Lafkas, D., Rodilla, V., Huyghe, M., Mourao, L., Kiaris, H., Fre, S., 2013. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. J. Cell Biol. 203, 47-56.
|
|
Landskroner-Eiger, S., Qian, B., Muise, E.S., Nawrocki, A.R., Berger, J.P., Fine, E.J., Koba, W., Deng, Y., Pollard, J.W., Scherer, P.E., 2009. Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo. Clin. Cancer Res. 15, 3265-3276.
|
|
Lane, T.F., Leder, P., 1997. Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15, 2133-2144.
|
|
Lang, L., Zheng, J., Liang, S., Zhang, F., Fu, Y., Deng, K., Li, F., Yang, X., Wang, J., Luo, Y., et al., 2023. Browning of mammary fat suppresses pubertal mammary gland development of mice via elevation of serum phosphatidylcholine and inhibition of PI3K/Akt pathway. Int. J. Mol. Sci. 24, 16171.
|
|
Lennon, M.J., Jones, S.P., Lovelace, M.D., Guillemin, G.J., Brew, B.J., 2017. Bcl11b-a critical neurodevelopmental transcription factor-roles in health and disease. Front. Cell Neurosci. 11, 89.
|
|
Lenz, H.J., Kahn, M., 2014. Safely targeting cancer stem cells via selective catenin coactivator antagonism. Cancer Sci. 105, 1087-1092.
|
|
Lewis, M.T., Ross, S., Strickland, P.A., Sugnet, C.W., Jimenez, E., Hui, C., Daniel, C.W., 2001. The Gli2 transcription factor is required for normal mouse mammary gland development. Dev. Biol. 238, 133-144.
|
|
Li, L., Li, B., Li, M., Niu, C., Wang, G., Li, T., Krol, E., Jin, W., Speakman, J.R., 2017. Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo. Mol. Metab. 6, 1198-1211.
|
|
Li, M., Guo, T., Lin, J., Huang, X., Ke, Q., Wu, Y., Fang, C., Hu, C., 2022. Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway. J. Ethnopharmacol. 283, 114689.
|
|
Li, N., Singh, S., Cherukuri, P., Li, H., Yuan, Z., Ellisen, L.W., Wang, B., Robbins, D., DiRenzo, J., 2008. Reciprocal intraepithelial interactions between TP63 and hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells 26, 1253-1264.
|
|
Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., Rowlands, T., Egeblad, M., Cowin, P., Werb, Z., et al., 2003. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl. Acad. Sci. U. S. A. 100, 15853-15858.
|
|
Li, Y.W., Shen, H., Frangou, C., Yang, N., Guo, J., Xu, B., Bshara, W., Shepherd, L., Zhu, Q., Wang, J., et al., 2015. Characterization of TAZ domains important for the induction of breast cancer stem cell properties and tumorigenesis. Cell Cycle 14, 146-156.
|
|
Lilja, A.M., Rodilla, V., Huyghe, M., Hannezo, E., Landragin, C., Renaud, O., Leroy, O., Rulands, S., Simons, B.D., Fre, S., 2018. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nat. Cell. Biol. 20, 677-687.
|
|
Lin, E.Y., Gouon-Evans, V., Nguyen, A.V., Pollard, J.W., 2002. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J. Mammary Gland Biol. Neoplasia. 7, 147-162.
|
|
Lin, Y., Li, Q., 2007. Expression and function of leptin and its receptor in mouse mammary gland. Sci. China C. Life Sci. 50, 669-675.
|
|
Lindvall, C., Evans, N.C., Zylstra, C.R., Li, Y., Alexander, C.M., Williams, B.O., 2006. The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J. Biol. Chem. 281, 35081-35087.
|
|
Lindvall, C., Zylstra, C.R., Evans, N., West, R.A., Dykema, K., Furge, K.A., Williams, B.O., 2009. The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS ONE 4, e5813.
|
|
Liu, C., Xu, Y., Yang, G., Tao, Y., Chang, J., Wang, S., Cheung, T.H., Chen, J., Zeng, Y.A., 2024. Niche inflammatory signals control oscillating mammary regeneration and protect stem cells from cytotoxic stress. Cell Stem Cell 31, 89-105.
|
|
Liu, H., Patel, M.R., Prescher, J.A., Patsialou, A., Qian, D., Lin, J., Wen, S., Chang, Y.F., Bachmann, M.H., Shimono, Y., et al., 2010. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc. Natl. Acad. Sci. U. S. A. 107, 18115-18120.
|
|
Liu, S., Dontu, G., Mantle, I.D., Patel, S., Ahn, N.S., Jackson, K.W., Suri, P., Wicha, M.S., 2006. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66, 6063-6071.
|
|
Liu, T., Zhou, J., Chen, Y., Fang, J., Liu, S., Frangou, C., Wang, H., Zhang, J., 2023. Genome-wide characterization of TAZ binding sites in mammary epithelial cells. Cancers (Basel) 15, 4713.
|
|
Liu, W., Wu, T., Dong, X., Zeng, Y.A., 2017. Neuropilin-1 is upregulated by Wnt/β-catenin signaling and is important for mammary stem cells. Sci. Rep. 7, 10941.
|
|
Lloyd-Lewis, B., Harris, O.B., Watson, C.J., Davis, F.M., 2017a. Mammary stem cells: premise, properties, and perspectives. Trends Cell Biol. 27, 556-567.
|
|
Lloyd-Lewis, B., Sargeant, T.J., Kreuzaler, P.A., Resemann, H.K., Pensa, S., Watson, C.J., 2017b. Analysis of the involuting mouse mammary gland: an in vivo model for cell death. Methods Mol. Biol. 1501, 165-186.
|
|
Lu, Y., Ma, W., Mao, J., Yu, X., Hou, Z., Fan, S., Song, B., Wang, H., Li, J., Kang, L., et al., 2015. Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of Hedgehog signaling. Chem. Biol. Interact. 228, 100-107.
|
|
Luhr, I., Friedl, A., Overath, T., Tholey, A., Kunze, T., Hilpert, F., Sebens, S., Arnold, N., Rosel, F., Oberg, H.H., et al., 2012. Mammary fibroblasts regulate morphogenesis of normal and tumorigenic breast epithelial cells by mechanical and paracrine signals. Cancer Lett. 325, 175-188.
|
|
Luo, J., Zou, H., Guo, Y., Tong, T., Chen, Y., Xiao, Y., Pan, Y., Li, P., 2023. The oncogenic roles and clinical implications of YAP/TAZ in breast cancer. Br. J. Cancer 128, 1611-1624.
|
|
Ma, S., Meng, Z., Chen, R., Guan, K.L., 2019. The Hippo pathway: biology and pathophysiology. Annu. Rev. Biochem. 88, 577-604.
|
|
MacDonald, B.T., Tamai, K., He, X., 2009. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9-26.
|
|
Mana-Capelli, S., Paramasivam, M., Dutta, S., McCollum, D., 2014. Angiomotins link F-actin architecture to Hippo pathway signaling. Mol. Biol. Cell 25, 1676-1685.
|
|
Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al., 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715.
|
|
Masso-Welch, P.A., Zangani, D., Ip, C., Vaughan, M.M., Shoemaker, S., Ramirez, R.A., Ip, M.M., 2002. Inhibition of angiogenesis by the cancer chemopreventive agent conjugated linoleic acid. Cancer Res. 62, 4383-4389.
|
|
Michalak, E.M., Milevskiy, M.J.G., Joyce, R.M., Dekkers, J.F., Jamieson, P.R., Pal, B., Dawson, C.A., Hu, Y., Orkin, S.H., Alexander, W.S., et al., 2018. Canonical PRC2 function is essential for mammary gland development and affects chromatin compaction in mammary organoids. PLoS. Biol. 16, e2004986.
|
|
Molyneux, G., Geyer, F.C., Magnay, F.A., McCarthy, A., Kendrick, H., Natrajan, R., Mackay, A., Grigoriadis, A., Tutt, A., Ashworth, A., et al., 2010. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7, 403-417.
|
|
Moraes, R.C., Zhang, X., Harrington, N., Fung, J.Y., Wu, M.F., Hilsenbeck, S.G., Allred, D.C., Lewis, M.T., 2007. Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development 134, 1231-1242.
|
|
Mukherjee, S., Manna, A., Bhattacharjee, P., Mazumdar, M., Saha, S., Chakraborty, S., Guha, D., Adhikary, A., Jana, D., Gorain, M., et al., 2016. Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR4(+) migrating cancer stem cells. Oncogene 35, 4937-4948.
|
|
Mumm, J.S., Kopan, R., 2000. Notch signaling: from the outside in. Dev. Biol. 228, 151-165.
|
|
Naik, S., Larsen, S.B., Cowley, C.J., Fuchs, E., 2018. Two to tango: dialog between immunity and stem cells in health and disease. Cell 175, 908-920.
|
|
Nandy, S.B., Arumugam, A., Subramani, R., Pedroza, D., Hernandez, K., Saltzstein, E., Lakshmanaswamy, R., 2015. MicroRNA-125a influences breast cancer stem cells by targeting leukemia inhibitory factor receptor which regulates the Hippo signaling pathway. Oncotarget 6, 17366-17378.
|
|
Nassour, M., Idoux-Gillet, Y., Selmi, A., Come, C., Faraldo, M.L., Deugnier, M.A., Savagner, P., 2012. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis. PLoS ONE 7, e53498.
|
|
Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C., Clay, J., Folke, C., Lubchenco, J., Mooney, H., Troell, M., 2000. Effect of aquaculture on world fish supplies. Nature 405, 1017-1024.
|
|
Need, E.F., Atashgaran, V., Ingman, W.V., Dasari, P., 2014. Hormonal regulation of the immune microenvironment in the mammary gland. J. Mammary Gland Biol. Neoplasia 19, 229-239.
|
|
O'Brien, J., Martinson, H., Durand-Rougely, C., Schedin, P., 2012. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 139, 269-275.
|
|
Oh, E., Kim, Y.J., An, H., Sung, D., Cho, T.M., Farrand, L., Jang, S., Seo, J.H., Kim, J.Y., 2018. Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Int. J. Cancer 143, 1978-1993.
|
|
Olson, L.K., Tan, Y., Zhao, Y., Aupperlee, M.D., Haslam, S.Z., 2010. Pubertal exposure to high fat diet causes mouse strain-dependent alterations in mammary gland development and estrogen responsiveness. Int. J. Obes. (Lond) 34, 1415-1426.
|
|
Pan, M., Li, M., You, C., Zhao, F., Guo, M., Xu, H., Li, L., Wang, L., Dou, J., 2020. Inhibition of breast cancer growth via miR-7 suppressing ALDH1A3 activity concomitant with decreasing breast cancer stem cell subpopulation. J. Cell Physiol. 235, 1405-1416.
|
|
Panciera, T., Azzolin, L., Fujimura, A., Di Biagio, D., Frasson, C., Bresolin, S., Soligo, S., Basso, G., Bicciato, S., Rosato, A., et al., 2016. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19, 725-737.
|
|
Pardoll, D.M., 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252-264.
|
|
Perez Pinero, C., Bruzzone, A., Sarappa, M.G., Castillo, L.F., Luthy, I.A., 2012. Involvement of α2- and β2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br. J. Pharmacol. 166, 721-736.
|
|
Pierce, D.F., Jr., Johnson, M.D., Matsui, Y., Robinson, S.D., Gold, L.I., Purchio, A.F., Daniel, C.W., Hogan, B.L., Moses, H.L., 1993. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev. 7, 2308-2317.
|
|
Pietersen, A.M., Evers, B., Prasad, A.A., Tanger, E., Cornelissen-Steijger, P., Jonkers, J., van Lohuizen, M., 2008. Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr. Biol. 18, 1094-1099.
|
|
Plaks, V., Boldajipour, B., Linnemann, J.R., Nguyen, N.H., Kersten, K., Wolf, Y., Casbon, A.J., Kong, N., van den Bijgaart, R.J., Sheppard, D., et al., 2015. Adaptive immune regulation of mammary postnatal organogenesis. Dev. cell 34, 493-504.
|
|
Plaks, V., Brenot, A., Lawson, D.A., Linnemann, J.R., Van Kappel, E.C., Wong, K.C., de Sauvage, F., Klein, O.D., Werb, Z., 2013. Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Rep. 3, 70-78.
|
|
Pollard, J.W., Hennighausen, L., 1994. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc. Natl. Acad. Sci. U. S. A. 91, 9312-9316.
|
|
Pon, C.K., Lane, J.R., Sloan, E.K., Halls, M.L., 2016. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J. 30, 1144-1154.
|
|
Quinn, H.M., Vogel, R., Popp, O., Mertins, P., Lan, L., Messerschmidt, C., Landshammer, A., Lisek, K., Chateau-Joubert, S., Marangoni, E., et al., 2021. YAP and β-Catenin cooperate to drive oncogenesis in basal breast cancer. Cancer Res. 81, 2116-2127.
|
|
Rahimi, N., Saulnier, R., Nakamura, T., Park, M., Elliott, B., 1994. Role of hepatocyte growth factor in breast cancer: a novel mitogenic factor secreted by adipocytes. DNA Cell Biol. 13, 1189-1197.
|
|
Ramamoorthy, P., Dandawate, P., Jensen, R.A., Anant, S., 2021. Celastrol and triptolide suppress stemness in triple negative breast cancer: Notch as a therapeutic target for stem cells. Biomedicines 9, 482.
|
|
Ranganathan, P., Weaver, K.L., Capobianco, A.J., 2011. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat. Rev. Cancer 11, 338-351.
|
|
Raute, K., Strietz, J., Parigiani, M.A., Andrieux, G., Thomas, O.S., Kistner, K.M., Zintchenko, M., Aichele, P., Hofmann, M., Zhou, H., et al., 2023. Breast cancer stem cell-derived tumors escape from γδ T-cell immunosurveillance in vivo by modulating γδ T-cell ligands. Cancer Immunol. Res. 11, 810-829.
|
|
Richert, M.M., Wood, T.L., 1999. The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. Endocrinology 140, 454-461.
|
|
Rios, A.C., Fu, N.Y., Lindeman, G.J., Visvader, J.E., 2014. In situ identification of bipotent stem cells in the mammary gland. Nature 506, 322-327.
|
|
Robinson, G.W., Hennighausen, L., Johnson, P.F., 2000. Side-branching in the mammary gland: the progesterone-Wnt connection. Genes Dev. 14, 889-894.
|
|
Rossiter, H., Barresi, C., Ghannadan, M., Gruber, F., Mildner, M., Fodinger, D., Tschachler, E., 2007. Inactivation of VEGF in mammary gland epithelium severely compromises mammary gland development and function. FASEB J. 21, 3994-4004.
|
|
Sakakura, T., Sakagami, Y., Nishizuka, Y., 1982. Dual origin of mesenchymal tissues participating in mouse mammary gland embryogenesis. Dev. Biol. 91, 202-207.
|
|
Sansone, P., Ceccarelli, C., Berishaj, M., Chang, Q., Rajasekhar, V.K., Perna, F., Bowman, R.L., Vidone, M., Daly, L., Nnoli, J., et al., 2016. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat. Commun. 7, 10442.
|
|
Sastry, K.S., Karpova, Y., Prokopovich, S., Smith, A.J., Essau, B., Gersappe, A., Carson, J.P., Weber, M.J., Register, T.C., Chen, Y.Q., et al., 2007. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J. Biol. Chem. 282, 14094-14100.
|
|
Schedin, P., Mitrenga, T., McDaniel, S., Kaeck, M., 2004. Mammary ECM composition and function are altered by reproductive state. Mol. Carcinog. 41, 207-220.
|
|
Semenza, G.L., 2016. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim. Biophys. Acta 1863, 382-391.
|
|
Sferruzzi-Perri, A.N., Robertson, S.A., Dent, L.A., 2003. Interleukin-5 transgene expression and eosinophilia are associated with retarded mammary gland development in mice. Biol. Reprod. 69, 224-233.
|
|
Shackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.L., Wu, L., Lindeman, G.J., Visvader, J.E., 2006. Generation of a functional mammary gland from a single stem cell. Nature 439, 84-88.
|
|
Shi, P., Feng, J., Chen, C., 2015. Hippo pathway in mammary gland development and breast cancer. Acta Biochim. Biophys. Sin. 47, 53-59.
|
|
Shiah, Y.J., Tharmapalan, P., Casey, A.E., Joshi, P.A., McKee, T.D., Jackson, H.W., Beristain, A.G., Chan-Seng-Yue, M.A., Bader, G.D., Lydon, J.P., et al., 2015. A progesterone-CXCR4 axis controls mammary progenitor cell fate in the adult gland. Stem Cell Rep. 4, 313-322.
|
|
Shiraishi, A., Tachi, K., Essid, N., Tsuboi, I., Nagano, M., Kato, T., Yamashita, T., Bando, H., Hara, H., Ohneda, O., 2017. Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells. Cancer Sci. 108, 362-372.
|
|
Shwartz, Y., Gonzalez-Celeiro, M., Chen, C.L., Pasolli, H.A., Sheu, S.H., Fan, S.M., Shamsi, F., Assaad, S., Lin, E.T., Zhang, B., et al., 2020. Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182, 578-593.
|
|
Simian, M., Hirai, Y., Navre, M., Werb, Z., Lochter, A., Bissell, M.J., 2001. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128, 3117-3131.
|
|
Skibinski, A., Breindel, J.L., Prat, A., Galvan, P., Smith, E., Rolfs, A., Gupta, P.B., LaBaer, J., Kuperwasser, C., 2014. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment. Cell Rep. 6, 1059-1072.
|
|
Sleeman, K.E., Kendrick, H., Robertson, D., Isacke, C.M., Ashworth, A., Smalley, M.J., 2007. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J. Cell Biol. 176, 19-26.
|
|
Song, W., Wang, R., Jiang, W., Yin, Q., Peng, G., Yang, R., Yu, Q.C., Chen, J., Li, J., Cheung, T.H., et al., 2019. Hormones induce the formation of luminal-derived basal cells in the mammary gland. Cell Res. 29, 206-220.
|
|
Soriano, J.V., Pepper, M.S., Orci, L., Montesano, R., 1998. Roles of hepatocyte growth factor/scatter factor and transforming growth factor-beta1 in mammary gland ductal morphogenesis. J. Mammary Gland Biol. Neoplasia 3, 133-150.
|
|
Soysal, S.D., Tzankov, A., Muenst, S.E., 2015. Role of the tumor microenvironment in breast cancer. Pathobiology 82, 142-152.
|
|
Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K.L., Armstrong, D., Ducy, P., Karsenty, G., 2002. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305-317.
|
|
Talhouk, R.S., Bissell, M.J., Werb, Z., 1992. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol. 118, 1271-1282.
|
|
Tchougounova, E., Lundequist, A., Fajardo, I., Winberg, J.O., Abrink, M., Pejler, G., 2005. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J. Biol. Chem. 280, 9291-9296.
|
|
Tiede, B., Kang, Y., 2011. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res. 21, 245-257.
|
|
Toivanen, R., Shen, M.M., 2017. Prostate organogenesis: tissue induction, hormonal regulation and cell type specification. Development 144, 1382-1398.
|
|
van Amerongen, R., Bowman, A.N., Nusse, R., 2012. Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell stem cell 11, 387-400.
|
|
van Es, J.H., van Gijn, M.E., Riccio, O., van den Born, M., Vooijs, M., Begthel, H., Cozijnsen, M., Robine, S., Winton, D.J., Radtke, F., et al., 2005. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959-963.
|
|
Van Keymeulen, A., Rocha, A.S., Ousset, M., Beck, B., Bouvencourt, G., Rock, J., Sharma, N., Dekoninck, S., Blanpain, C., 2011. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189-193.
|
|
Vaupel, P., Hockel, M., Mayer, A., 2007. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signal. 9, 1221-1235.
|
|
Wang, D., Cai, C., Dong, X., Yu, Q.C., Zhang, X.O., Yang, L., Zeng, Y.A., 2015. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517, 81-84.
|
|
Wang, D., Hu, X., Liu, C., Jia, Y., Bai, Y., Cai, C., Wang, J., Bai, L., Yang, R., Lin, C., et al., 2019. Protein C receptor is a therapeutic stem cell target in a distinct group of breast cancers. Cell Res. 29, 832-845.
|
|
Wang, P., Loh, K.H., Wu, M., Morgan, D.A., Schneeberger, M., Yu, X., Chi, J., Kosse, C., Kim, D., Rahmouni, K., et al., 2020. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature 583, 839-844.
|
|
Wang, R., Huang, F., Wei, W., Zhou, Y., Ye, Z., Yu, L., Hu, J., Cai, C., 2021. Programmed cell death ligand 1 is enriched in mammary stem cells and promotes mammary development and regeneration. Front. Cell Dev. Biol. 9, 772669.
|
|
Wang, P., Mariman, E., Renes, J., Keijer, J., 2008. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell Physiol. 216, 3-13.
|
|
Wang, X.Y., Yin, Y., Yuan, H., Sakamaki, T., Okano, H., Glazer, R.I., 2008. Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol. Cell Biol. 28, 3589-3599.
|
|
Wiseman, B.S., Werb, Z., 2002. Stromal effects on mammary gland development and breast cancer. Science 296, 1046-1049.
|
|
Wright, M.H., Calcagno, A.M., Salcido, C.D., Carlson, M.D., Ambudkar, S.V., Varticovski, L., 2008. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 10, R10.
|
|
Xiang, L., Gilkes, D.M., Hu, H., Luo, W., Bullen, J.W., Liang, H., Semenza, G.L., 2015. HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget 6, 11768-11778.
|
|
Xiang, L., Gilkes, D.M., Hu, H., Takano, N., Luo, W., Lu, H., Bullen, J.W., Samanta, D., Liang, H., Semenza, G.L., 2014. Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget 5, 12509-12527.
|
|
Xie, T., Jiang, C., Dai, T., Xu, R., Zhou, X., Su, X., Zhao, X., 2019. Knockdown of XB130 restrains cancer stem cell-like phenotype through inhibition of Wnt/β-Catenin signaling in breast cancer. Mol. Carcinog. 58, 1832-1845.
|
|
Xu, J., Li, L., Shi, P., Cui, H., Yang, L., 2022. The Crucial roles of Bmi-1 in cancer: implications in pathogenesis, metastasis, drug resistance, and targeted therapies. Int. J. Mol. Sci. 23, 8231.
|
|
Yang, J., Liao, D., Chen, C., Liu, Y., Chuang, T.H., Xiang, R., Markowitz, D., Reisfeld, R.A., Luo, Y., 2013. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 31, 248-258.
|
|
Ye, X., Tam, W.L., Shibue, T., Kaygusuz, Y., Reinhardt, F., Ng Eaton, E., Weinberg, R.A., 2015. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256-260.
|
|
Ye, Z., Xu, Y., Zhang, M., Cai, C., 2024. Sympathetic nerve signals: orchestrators of mammary development and stem cell vitality. J. Mol. Cell Biol. 16, mjae020.
|
|
Yoshihara, E., O'Connor, C., Gasser, E., Wei, Z., Oh, T.G., Tseng, T.W., Wang, D., Cayabyab, F., Dai, Y., Yu, R.T., et al., 2020. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586, 606-611.
|
|
Yu, Q.C., Verheyen, E.M., Zeng, Y.A., 2016. Mammary development and breast cancer: a Wnt perspective. Cancers 8, 65.
|
|
Zeng, L., Cai, C., Li, S., Wang, W., Li, Y., Chen, J., Zhu, X., Zeng, Y.A., 2016. Essential roles of Cyclin Y-like 1 and Cyclin Y in dividing Wnt-responsive mammary stem/progenitor cells. PLoS. Genet. 12, e1006055.
|
|
Zeng, Y.A., Nusse, R., 2010. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell stem cell 6, 568-577.
|
|
Zeybek, N.D., Baysal, E., Bozdemir, O., Buber, E., 2021. Hippo signaling: a stress response pathway in stem cells. Curr. Stem Cell Res. Ther. 16, 824-839.
|
|
Zhang, C., Samanta, D., Lu, H., Bullen, J.W., Zhang, H., Chen, I., He, X., Semenza, G.L., 2016. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc. Natl. Acad. Sci. U. S. A. 113, E2047-E2056.
|
|
Zhang, F., Liu, B., Deng, Q., Sheng, D., Xu, J., He, X., Zhang, L., Liu, S., 2021. UCP1 regulates ALDH-positive breast cancer stem cells through releasing the suppression of Snail on FBP1. Cell. Biol. Toxicol. 37, 277-291.
|
|
Zhang, H., Lu, H., Xiang, L., Bullen, J.W., Zhang, C., Samanta, D., Gilkes, D.M., He, J., Semenza, G.L., 2015. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc. Natl. Acad. Sci. U. S. A. 112, E6215-E6223.
|
|
Zhang, H.Z., Bennett, J.M., Smith, K.T., Sunil, N., Haslam, S.Z., 2002. Estrogen mediates mammary epithelial cell proliferation in serum-free culture indirectly via mammary stroma-derived hepatocyte growth factor. Endocrinology 143, 3427-3434.
|
|
Zhang, L., Chen, W., Liu, S., Chen, C., 2023. Targeting breast cancer stem cells. Int. J. Biol. Sci. 19, 552-570.
|
|
Zhang, R., Yang, Y., Dong, W., Lin, M., He, J., Zhang, X., Tian, T., Yang, Y., Chen, K., Lei, Q.Y., et al., 2022. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1. Proc. Natl. Acad. Sci. U. S. A. 119, e2114851119.
|
|
Zhang, M., Zhang, L., Geng, A., Li, X., Zhou, Y., Xu, L., Zeng, Y.A., Li, J., Cai, C., 2022. CDK14 inhibition reduces mammary stem cell activity and suppresses triple negative breast cancer progression. Cell Rep. 40, 111331.
|
|
Zhao, C., Cai, S., Shin, K., Lim, A., Kalisky, T., Lu, W.J., Clarke, M.F., Beachy, P.A., 2017. Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells. Science 356, eaal3485.
|
|
Zhao, W., Wang, M., Cai, M., Zhang, C., Qiu, Y., Wang, X., Zhang, T., Zhou, H., Wang, J., Zhao, W., et al., 2021. Transcriptional co-activators YAP/TAZ: potential therapeutic targets for metastatic breast cancer. Biomed. Pharmacother. 133, 110956.
|
|
Zhao, Y., Nichols, J.E., Valdez, R., Mendelson, C.R., Simpson, E.R., 1996. Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Mol. Endocrinol. 10, 1350-1357.
|
|
Zhou, J., Liu, Z., Zhang, L., Hu, X., Wang, Z., Ni, H., Wang, Y., Qin, J., 2020. Activation of β2-adrenergic receptor promotes growth and angiogenesis in breast cancer by down-regulating PPARγ. Cancer Res. Treat. 52, 830-847.
|
|
Zhou, M., Hou, Y., Yang, G., Zhang, H., Tu, G., Du, Y.E., Wen, S., Xu, L., Tang, X., Tang, S., et al., 2016. LncRNA-Hh strengthen cancer stem cells generation in Twist-positive breast cancer via activation of Hedgehog signaling pathway. Stem Cells 34, 55-66.
|
|
Zhou, Y., Ye, Z., Wei, W., Zhang, M., Huang, F., Li, J., Cai, C., 2023. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis. NPJ Regenerative medicine 8, 23.
|
|
Zinatizadeh, M.R., Miri, S.R., Zarandi, P.K., Chalbatani, G.M., Raposo, C., Mirzaei, H.R., Akbari, M.E., Mahmoodzadeh, H., 2021. The Hippo tumor suppressor pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis. 8, 48-60.
|