9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 12
Dec.  2025
Turn off MathJax
Article Contents

GLGW10 controls grain size associated with the lignin content in rice

doi: 10.1016/j.jgg.2025.02.009
Funds:

D Program of China (2023YFF1000500), the Fundamental Research Funds for the Central Universities (226-2024-00102), and the Hundred-Talent Program of Zhejiang University, China to M. Z.

This work was supported by grants from the National Key R&

  • Received Date: 2024-11-13
  • Accepted Date: 2025-02-17
  • Rev Recd Date: 2025-02-16
  • Publish Date: 2025-12-31
  • Grain size, which encompasses length, width, and thickness, is a critical agricultural trait that influences both grain yield and quality in rice. Although numerous grain size regulators have been identified, the molecular mechanisms governing grain size and the lignin content remain largely elusive. In this study, we clone and characterize GRAIN LENGTH AND GRAIN WIDTH 10 (GLGW10), a regulator of grain size in rice. Loss-of-function mutations in GLGW10 result in reduced grain size. GLGW10 encodes an evolutionarily conserved protein, the function of which has not been previously characterized in higher plants. Biochemical assays reveal that GLGW10 may interact with the transcription factor OsMYB108, which acts as a negative regulator of the lignin content. Knockout of OsMYB108 leads to longer and slender grain size, accompanied by increased lignin content, indicating that OsMYB108 negatively regulates both grain size and lignin content. Analysis of natural variations and haplotypes in GLGW10 reveals an association with grain size, suggesting an artificial selection on GLGW10 during rice domestication. In summary, our findings identify regulators of grain size and elucidate potential mechanisms linking grain size and lignin metabolism in rice, thereby providing essential insights for improving crop yields.
  • loading
  • Agarwal, T., Grotewold, E., Doseff, A.I., Gray, J., 2016. MYB31/MYB42 syntelogs exhibit divergent regulation of phenylpropanoid genes in maize, sorghum and rice. Sci. Rep. 6, 28502.
    Allen, G.C., Flores-Vergara, M.A., Krasnyanski, S., Kumar, S., Thompson, W.F., 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320-2325.
    Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009. BLAST plus : architecture and applications. BMC Bioinformatics 10, 421.
    Chen, W.K., Chen, L., Zhang, X., Yang, N., Guo, J.H., Wang, M., Ji, S.H., Zhao, X.Y., Yin, P.F., Cai, L.C., et al., 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375, 1372.
    Chen, E.R., Hou, Q.Q., Liu, K., Gu, Z.L., Dai, B.X., Wang, A.H., Feng, Q., Zhao, Y., Zhou, C.C., Zhu, J.J., et al., 2023. Armadillo repeat only protein GS10 negatively regulates brassinosteroid signaling to control rice grain size. Plant Physiol. 192, 967-981.
    Chen, R.J., Xiao, N., Lu, Y., Tao, T.Y., Huang, Q.F., Wang, S.T., Wang, Z.C., Chuan, M., Bu, Q., Lu, Z., et al., 2023. A de novo evolved gene contributes to rice grain shape difference between indica and japonica. Nat. Commun. 14, 5906.
    Dong, N.Q., Lin, H.X., 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 63, 180-209.
    Dong, N.Q., Sun, Y., Guo, T., Shi, C.L., Zhang, Y.M., Kan, Y., Xiang, Y.H., Zhang, H., Yang, Y.B., Li, Y.C., et al., 2020. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat. Commun. 11, 2629.
    Fornale, S., Shi, X.H., Chai, C.L., Encina, A., Irar, S., Capellades, M., Fuguet, E., Torres, J.L., Rovira, P., Puigdomenech, P., et al., 2010. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J. 64, 633-644.
    He, F., Zhang, F., Sun, W., Ning, Y., Wang, G.L., 2018. A versatile vector toolkit for functional analysis of rice genes. Rice 11, 27.
    Hiei, Y., Komari, T., 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824-834.
    Jefferson, R.A., Kavanagh, T.A., Bevan, M.W., 1987. Gus fusions - beta-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO J. 6, 3901-3907.
    Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.
    Li, G.M., Tang, J.Y., Zheng, J.K., Chu, C.C., 2021. Exploration of rice yield potential: Decoding agronomic and physiological traits. Crop J. 9, 577-589.
    Li, L., Stoeckert, C.J., Roos, D.S., 2003. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 1, 2178-2189.
    Li, N., Xu, R., Li, Y.H., 2019. Molecular networks of seed size control in plants. Annu. Rev. Plant Biol. 70, 435-463.
    Lin, H., Wang, M., Chen, Y., Nomura, K., Hui, S., Gui, J., Zhang, X., Wu, Y., Liu, J., Li, Q., et al., 2022. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Sci. Adv. 8, eabg8723.
    Liu, H., Ding, Y.D., Zhou, Y.Q., Jin, W.Q., Xie, K.B., Chen, L.L., 2017. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant 10, 530-532.
    Liu, Q.Q., Luo, L., Zheng, L.Q., 2018. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19, 335.
    Lv, S., Lin, Z., Shen, J., Luo, L., Xu, Q., Li, L., Gui, J., 2024. OsTCP19 coordinates inhibition of lignin biosynthesis and promotion of cellulose biosynthesis to modify lodging resistance in rice. J. Exp. Bot. 75, 123-136.
    Mao, T., Zhu, M.D., Sheng, Z.H., Shao, G.N., Jiao, G.A., Mawia, A.M., Ahmad, S., Xie, L.H., Tang, S.Q., Wei, X.J., et al., 2021. Effects of grain shape genes editing on appearance quality of erect-panicle rice. Rice 14, 74.
    Miyamoto, T., Takada, R., Tobimatsu, Y., Takeda, Y., Suzuki, S., Yamamura, M., Osakabe, K., Osakabe, Y., Sakamoto, M., Umezawa, T., 2019. OsMYB108 loss-of-function enriches p-coumaroylated and tricin lignin units in rice cell walls. Plant J. 98, 975-987.
    Miyamoto, T., Tobimatsu, Y., Umezawa, T., 2020. MYB-mediated regulation of lignin biosynthesis in grasses. Curr. Plant Biol. 24, 100174.
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.
    Ren, D., Ding, C., Qian, Q., 2023. Molecular bases of rice grain size and quality for optimized productivity. Sci. Bull. 68, 314-350.
    Rezaei, E.E., Webber, H., Asseng, S., Boote, K., Durand, J.L., Ewert, F., Martre, P., Maccarthy, D.S., 2023. Climate change impacts on crop yields. Nat. Rev. Earth & Environ. 4, 831-846.
    Sun, K.W., Zheng, Y.Y., Zhu, Z.Q., 2017. Luciferase complementation imaging assay in leaves for transiently determining protein-protein interaction dynamics. Jove-J. Vis. Exp. 129, 56641.
    Wang, C.S., Tang, S.C., Zhan, Q.L., Hou, Q.Q., Zhao, Y., Zhao, Q., Feng, Q., Zhou, C.C., Lyu, D.F., Cui, L.L., et al., 2019. Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nat. Commun. 10, 2982.
    Wang, W.S., Mauleon, R., Hu, Z.Q., Chebotarov, D., Tai, S.S., Wu, Z.C., Li, M., Zheng, T.Q., Fuentes, R.R., Zhang, F., et al., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43.
    Xing, Y.Z., Zhang, Q.F., 2010. Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61, 421-442.
    Xiong, D.P., Wang, R.C., Wang, Y.M., Li, Y., Sun, G., Yao, S.G., 2023. SLG2 specifically regulates grain width through WOX11-mediated cell expansion control in rice. Plant Biotechnol. J. 21, 1904-1918.
    Xu, R., Li, N., Li, Y.H., 2019. Control of grain size by G protein signaling in rice. J. Integr. Plant Biol. 61, 533-540.
    Yu, A.M., Li, F., Xu, W., Wang, Z.Q., Sun, C., Han, B., Wang, Y., Wang, B., Cheng, X.M., Liu, A.H., 2019. Application of a high-resolution genetic map for chromosome-scale genome assembly and fine QTLs mapping of seed size and weight traits in castor bean. Sci. Rep. 9, 11950.
    Zhang, J.L., Wang, Y.C., Naeem, M., Zhu, M.K., Li, J., Yu, X.H., Hu, Z.L., Chen, G.P., 2019. An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. J. Exp. Bot. 70, 909-924.
    Zhang, R.L., Jia, G.Q., Diao, X.M., 2023. geneHapR: an R package for gene haplotypic statistics and visualization. BMC Bioinformatics 24, 199.
    Zhang, Y.M., Yu, H.X., Ye, W.W., Shan, J.X., Dong, N.Q., Guo, T., Kan, Y., Xiang, Y.H., Zhang, H., Yang, Y.B., et al., 2021. A rice QTL GS3.1 regulates grain size through metabolic-flux distribution between flavonoid and lignin metabolons without affecting stress tolerance. Commun. Biol. 4, 1171.
    Zhao, D.S., Liu, Q.Q., Zhang, C.Q., Li, Q.F., 2022. Genetic control of grain appearance quality in rice. Biotechnol. Adv. 60, 108014.
    Zhao, Q., 2016. Lignification: flexibility, biosynthesis and regulation. Trends Plant Sci. 21, 713-721.
    Zhao, S.S., Zhao, L., Liu, F.X., Wu, Y.Z., Zhu, Z.F., Sun, C.Q., Tan, L.B., 2016. NARROW AND ROLLED LEAF 2 regulates leaf shape, male fertility, and seed size in rice. J. Integr. Plant Biol. 58, 983-996.
    Zuo, J.R., Li, J.Y., 2014. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu. Rev. Genet. 48, 99-118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (40) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return