9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 12
Dec.  2025
Turn off MathJax
Article Contents

The HISTONE ACETYLTRANSFERASE 1 interacts with CONSTANS to promote flowering in Arabidopsis

doi: 10.1016/j.jgg.2025.01.010
Funds:

This work was supported by the National Natural Science Foundation of China to Z.L. (32300474) and to C.L. (32470346 and 32270362), the Guangdong Basic and Applied Basic Research Foundation to C.L. (2024A1515010612), and the Fundamental Research Funds for the Central Universities to X.S. (24qnpy078).

  • Received Date: 2024-10-08
  • Accepted Date: 2025-01-15
  • Rev Recd Date: 2025-01-15
  • Publish Date: 2025-12-31
  • Chromatin modifications, including histone acetylation, play essential roles in regulating flowering. The CBP/p300 family HISTONE ACETYLTRANSFERASE 1 (HAC1), which mediates histone acetylation, promotes the process of floral transition; however, the precise mechanism remains largely unclear. Specifically, how HAC1 is involved in the flowering regulatory network and which genes are the direct targets of HAC1 during flowering regulation are still unknown. In this study, we elucidate the critical function of HAC1 in promoting flowering via exerting active epigenetic markers at two key floral integrators, FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), thereby regulating their expression to trigger the flowering process. We show that HAC1 physically interacts with CONSTANS (CO) in vivo and in vitro. Chromatin immunoprecipitation results indicate that HAC1 directly binds to the FT and SOC1 loci. Loss of HAC1 impairs CO-mediated transcriptional activation of FT and SOC1 in promoting flowering. Moreover, CO mutation leads to the decreased enrichment of HAC1 at FT and SOC1, indicating that CO recruits HAC1 to FT and SOC1. Finally, HAC1, as well as CO, is required for the elevated histone acetylation level at FT and SOC1. Taken together, our finding reveals that HAC1-mediated histone acetylation boots flowering via a CO-dependent activation of FT and SOC1.
  • loading
  • Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., Araki, T., 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
    Adrian, J., Farrona, S., Reimer, J.J., Albani, M.C., Coupland, G., Turck, F., 2010. cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22, 1425-1440.
    Alberti, S., Gladfelter, A., Mittag, T., 2019. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419-434.
    Amasino, R., 2010. Seasonal and developmental timing of flowering. Plant J. 61, 1001-1013.
    An, C., Li, L., Zhai, Q., You, Y., Deng, L., Wu, F., Chen, R., Jiang, H., Wang, H., Chen, Q., et al., 2017. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc. Natl. Acad. Sci. U. S. A. 114, E8930-e8939.
    Berger, S.L., 2007. The complex language of chromatin regulation during transcription. Nature 447, 407-412.
    Bernat-Silvestre, C., De Sousa Vieira, V., Sanchez-Simarro, J., Aniento, F., Marcote, M.J., 2021. Transient transformation of A. thaliana seedlings by vacuum infiltration. Methods Mol. Biol. 2200, 147-155.
    Bordoli, L., Netsch, M., Luthi, U., Lutz, W., Eckner, R., 2001. Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins. Nucleic Acids Res. 29, 589-597.
    Cao, S., Kumimoto, R.W., Gnesutta, N., Calogero, A.M., Mantovani, R., Holt, B.F, 3rd, 2014. A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis. Plant Cell 26, 1009-1017.
    Chen, Q., Xu, X., Xu, D., Zhang, H., Zhang, C., Li, G., 2019. WRKY18 and WRKY53 coordinate with HISTONE ACETYLTRANSFERASE1 to regulate rapid responses to sugar. Plant Physiol. 180, 2212-2226.
    Chen, Y., Guo, P., Dong, Z., 2024. The role of histone acetylation in transcriptional regulation and seed development. Plant Physiol. 194, 1962-1979.
    Cheng, Z., Zhang, X., Huang, P., Huang, G., Zhu, J., Chen, F., Miao, Y., Liu, L., Fu, Y.F., Wang, X., 2020. Nup96 and HOS1 are mutually stabilized and gate CONSTANS protein level, conferring long-day photoperiodic flowering regulation in Arabidopsis. Plant Cell 32, 374-391.
    Clough, S.J., Bent, A.F., 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
    Deng, W., Liu, C., Pei, Y., Deng, X., Niu, L., Cao, X., 2007. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. Plant Physiol. 143, 1660-1668.
    Fang, X., Wang, L., Ishikawa, R., Li, Y., Fiedler, M., Liu, F., Calder, G., Rowan, B., Weigel, D., Li, P., et al., 2019. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes. Nature 569, 265-269.
    Guo, J., Wei, L., Chen, S.S., Cai, X.W., Su, Y.N., Li, L., Chen, S., He, X.J., 2021. The CBP/p300 histone acetyltransferases function as plant-specific MEDIATOR subunits in Arabidopsis. J. Integr. Plant Biol. 63, 755-771.
    Han, S.K., Song, J.D., Noh, Y.S., Noh, B., 2007. Role of plant CBP/p300-like genes in the regulation of flowering time. Plant J. 49, 103-114.
    Hou, X., Zhou, J., Liu, C., Liu, L., Shen, L., Yu, H., 2014. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat. Commun. 5, 4601.
    Huang, D., Lan, W., Ma, W., Huang, R., Lin, W., Li, M., Chen, C.Y., Wu, K., Miao, Y., 2022. WHIRLY1 recruits the histone deacetylase HDA15 repressing leaf senescence and flowering in Arabidopsis. J. Integr. Plant Biol. 64, 1411-1429.
    Jaeger, K.E., Pullen, N., Lamzin, S., Morris, R.J., Wigge, P.A., 2013. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25, 820-833.
    Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., Weigel, D., 1999. Activation tagging of the floral inducer FT. Science 286, 1962-1965.
    Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., Araki, T., 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962.
    Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M., Lee, I., 2000. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14, 2366-2376.
    Liang, Z., Yuan, L., Xiong, X., Hao, Y., Song, X., Zhu, T., Yu, Y., Fu, W., Lei, Y., Xu, J., et al., 2022. The transcriptional repressors VAL1 and VAL2 mediate genome-wide recruitment of the CHD3 chromatin remodeler PICKLE in Arabidopsis. Plant Cell 34, 3915-3935.
    Liang, Z., Zhu, T., Yu, Y., Wu, C., Huang, Y., Hao, Y., Song, X., Fu, W., Yuan, L., Cui, Y., et al., 2024. PICKLE-mediated nucleosome condensing drives H3K27me3 spreading for the inheritance of Polycomb memory during differentiation. Mol. Cell 84, 3438-3454.
    Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.H., Liou, Y.C., Yu, H., 2008. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135, 1481-1491.
    Liu, L., Adrian, J., Pankin, A., Hu, J., Dong, X., von Korff, M., Turck, F., 2014. Induced and natural variation of promoter length modulates the photoperiodic response of FLOWERING LOCUS T. Nat. Commun. 5, 4558.
    Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
    Lu, Q., Tang, X., Tian, G., Wang, F., Liu, K., Nguyen, V., Kohalmi, S.E., Keller, W.A., Tsang, E.W., Harada, J.J., et al., 2010. Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J. 61, 259-270.
    Luo, M., Tai, R., Yu, C.W., Yang, S., Chen, C.Y., Lin, W.D., Schmidt, W., Wu, K., 2015. Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant J. 82, 925-936.
    Luo, X., Gao, Z., Wang, Y., Chen, Z., Zhang, W., Huang, J., Yu, H., He, Y., 2018. The NUCLEAR FACTOR-CONSTANS complex antagonizes Polycomb repression to de-repress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis. Plant J. 95, 17-29.
    Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G., Lee, I., 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35, 613-623.
    Ning, Y.Q., Chen, Q., Lin, R.N., Li, Y.Q., Li, L., Chen, S., He, X.J., 2019. The HDA19 histone deacetylase complex is involved in the regulation of flowering time in a photoperiod-dependent manner. Plant J. 98, 448-464.
    Pandey, R., Muller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., Jorgensen, R.A., 2002. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30, 5036-5055.
    Putterill, J., Robson, F., Lee, K., Simon, R., Coupland, G., 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857.
    Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., Coupland, G., 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613-1616.
    Shvedunova, M., Akhtar, A., 2022. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329-349.
    Simpson, G.G., 2004. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol. 7, 570-574.
    Simpson, G.G., Dean, C., 2002. Arabidopsis, the Rosetta stone of flowering time? Science 296, 285-289.
    Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., Imaizumi, T., 2015. Photoperiodic flowering: time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66, 441-464.
    Stockinger, E.J., Mao, Y., Regier, M.K., Triezenberg, S.J., Thomashow, M.F., 2001. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res. 29, 1524-1533.
    Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., Coupland, G., 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120.
    Tiwari, S.B., Shen, Y., Chang, H.C., Hou, Y., Harris, A., Ma, S.F., McPartland, M., Hymus, G.J., Adam, L., Marion, C., et al., 2010. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol. 187, 57-66.
    Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G., 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003-1006.
    Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., et al., 2004. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428-438.
    Wigge, P.A., 2011. FT, a mobile developmental signal in plants. Curr. Biol. 21, R374-378.
    Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., Weigel, D., 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056-1059.
    Wu, K., Zhang, L., Zhou, C., Yu, C.W., Chaikam, V., 2008. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J. Exp. Bot. 59, 225-234.
    Xia, F.N., Zeng, B., Liu, H.S., Qi, H., Xie, L.J., Yu, L.J., Chen, Q.F., Li, J.F., Chen, Y.Q., Jiang, L., et al., 2020. SINAT E3 ubiquitin ligases mediate FREE1 and VPS23A degradation to modulate Abscisic Acid signaling. Plant Cell 32, 3290-3310.
    Xiao, J., Li, C., Xu, S., Xing, L., Xu, Y., Chong, K., 2015. JACALIN-LECTIN LIKE1 regulates the nuclear accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, influencing the RNA processing of FLOWERING LOCUS C antisense transcripts and flowering time in Arabidopsis. Plant Physiol. 169, 2102-2117.
    Xu, Y., Li, Q., Yuan, L., Huang, Y., Hung, F.Y., Wu, K., Yang, S., 2022. MSI1 and HDA6 function interdependently to control flowering time via chromatin modifications. Plant J. 109, 831-843.
    Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., Yoo, S.Y., Lee, J.S., Ahn, J.H., 2005. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol. 139, 770-778.
    Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., Wu, K., 2011. HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol. 156, 173-184.
    Yun, S.H., Khan, I.U., Noh, B., Noh, Y.S., 2024. Genomic overview of INA-induced NPR1 targeting and transcriptional cascades in Arabidopsis. Nucleic Acids Res. 52, 3572-3588.
    Zeng, X., Gao, Z., Jiang, C., Yang, Y., Liu, R., He, Y., 2020. HISTONE DEACETYLASE 9 functions with Polycomb silencing to repress FLOWERING LOCUS C expression. Plant Physiol. 182, 555-565.
    Zhang, Y., Fan, S., Hua, C., Teo, Z.W.N., Kiang, J.X., Shen, L., Yu, H., 2022. Phase separation of HRLP regulates flowering time in Arabidopsis. Sci. Adv. 8, eabn5488.
    Zhou, Z., Bi, G., Zhou, J.M., 2018. Luciferase complementation asay for protein-potein Interactions in pants. Curr. Protoc. Plant Biol. 3, 42-50.
    Zhu, P., Lister, C., Dean, C., 2021. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 599, 657-661.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (39) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return