9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

The roles of strigolactones in plant resilience to environmental stresses

doi: 10.1016/j.jgg.2025.12.001
Funds:

The work was supported by Shandong Provincial Natural Science Foundation (ZR2023QC016), Liaocheng University (318052288), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28110100), National Key Research and Development Program of China (2022YFD1500505), and the Natural Science Foundation of China (No.32370321).

  • Received Date: 2025-07-22
  • Accepted Date: 2025-12-03
  • Rev Recd Date: 2025-12-01
  • Available Online: 2025-12-09
  • Strigolactones (SLs) are a group of phytohormones that enhance hyphal branching of arbuscular mycorrhizal fungi (AMF), promote seed germination of parasitic plants, and influence plant growth, development, and stress acclimation. SLs improve plant stress resilience by modulating shoot and root architecture, photosynthesis, nutrient homeostasis, and antioxidant defense. Under nutrient deficiency, SL accumulation enhances AMF colonization and triggers the expression of genes related to the nutrient starvation response. When subjected to drought, SLs mitigate water loss by modulating stomatal density and closure, cell membrane integrity, and anthocyanin biosynthesis. SLs also mitigate salinity and heavy metal stresses by maintaining ion homeostasis, while conferring thermotolerance and enhancing chilling tolerance. In this review, we highlight recent advances in SLs and their mechanisms in plant responses to environmental stresses, including nutrient deficiencies, drought, salinity, extreme temperatures, metal toxicity, herbivore attack, and pathogen infection. We further discuss how SLs interact with other phytohormones to coordinate the physiological, biochemical, and molecular regulatory events critical for plant acclimation to abiotic and biotic stresses.
  • loading
  • Abe, S., Sado, A., Tanaka, K., Kisugi, T., Asami, K., Ota, S., Kim, H.I., Yoneyama, K., Xie, X., Ohnishi, T., et al., 2014. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. U. S. A. 111, 18084-18089.
    Agusti, J., Herold, S., Schwarz, M., Sanchez, P., Ljung, K., Dun, E.A., Brewer, P.B., Beveridge, C.A., Sieberer, T., Sehr, E.M., et al., 2011. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl. Acad. Sci. U. S. A. 108, 20242-20247.
    Akiyama, K., Matsuzaki, K., Hayashi, H., 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824-827.
    Al-Babili, S., Bouwmeester, H.J., 2015. Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66, 161-186.
    Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P., Al-Babili, S., 2012. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335, 1348-1351.
    Aroca, R., Ruiz-Lozano, J.M., Zamarreno, A.M., Paz, J.A., Garcia-Mina, J.M., Pozo, M.J., Lopez-Raez, J.A., 2013. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170, 47-55.
    Ban, X., Qin, L., Yan, J., Wu, J., Li, Q., Su, X., Hao, Y., Hu, Q., Kou, L., Yan, Z., et al., 2025. Manipulation of a strigolactone transporter in tomato confers resistance to the parasitic weed broomrape. The Innovation 6.
    Bhat, M.A., Mishra, A.K., Shah, S.N., Bhat, M.A., Jan, S., Rahman, S., Baek, K.H., Jan, A.T., 2024. Soil and mineral nutrients in plant health: a prospective study of iron and phosphorus in the growth and development of plants. Curr. Issues Mol. Biol. 46, 5194-5222.
    Bhoi, A., Yadu, B., Chandra, J., Keshavkant, S., 2021. Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta 254, 1-21.
    Brewer, P.B., Yoneyama, K., Filardo, F., Meyers, E., Scaffidi, A., Frickey, T., Akiyama, K., Seto, Y., Dun, E.A., Cremer, J.E., 2016. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 113, 6301-6306.
    Butler, L.G., 1994. Chemical communication between the parasitic weed Striga and its crop host, in: Inderjit, Dakshini, K.M.M., Einhellig, F.A. (eds.), Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582, American Chemical Society, Washington, D.C., pp. 158–168.
    Carvalhais, L.C., Rincon-Florez, V.A., Brewer, P.B., Beveridge, C.A., Dennis, P.G., Schenk, P.M., 2019. The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere 9, 18-26.
    Chang S.H., George W.J., Nelson D.C., 2025. An N-terminal domain specifies developmental control by the SMAX1-LIKE family of transcriptional regulators in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 122, e2412793122.
    Chen, J., Zhang, L., Zhu, M., Han, L., Lv, Y., Liu, Y., Li, P., Jing, H., Cai, H., 2018. Non-dormant Axillary Bud 1 regulates axillary bud outgrowth in sorghum. J. Integr. Plant Biol. 60, 938-955.
    Chen, K., Li, G.J., Bressan, R.A., Song, C.-P., Zhu, J.K., Zhao, Y., 2020. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62, 25-54.
    Chesterfield, R.J., Vickers, C.E., Beveridge, C.A., 2020. Translation of strigolactones from plant hormone to agriculture: achievements, future perspectives, and challenges. Trends Plant Sci. 25, 1087-1106.
    Chi, C., Xu, X., Wang, M., Zhang, H., Fang, P., Zhou, J., Xia, X., Shi, K., Zhou, Y., Yu, J., 2021. Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Hortic. Res. 8, 237.
    Cook, C., Whichard, L.P., Turner, B., Wall, M.E., Egley, G.H., 1966. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189-1190.
    Cooper, J.W., Hu, Y., Beyyoudh, L., Yildiz Dasgan, H., Kunert, K., Beveridge, C.A., Foyer, C.H., 2018. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ. 41, 1298-1310.
    Cui, J., Nishide, N., Mashiguchi, K., Kuroha, K., Miya, M., Sugimoto, K., Itoh, J.I., Yamaguchi, S., Izawa, T., 2023. Fertilization controls tiller numbers via transcriptional regulation of a MAX1-like gene in rice cultivation. Nat. Commun. 14, 3191.
    Daszkowska-Golec, A., Mehta, D., Uhrig, R., Braszewska, A., Novak, O., Fontana, I., Melzer, M., Plociniczak, T., Marzec, M., 2023. Multi-omics insights into the positive role of strigolactone perception in barley drought response. BMC Plant Biol. 23, 445.
    Decker, E.L., Alder, A., Hunn, S., Ferguson, J., Lehtonen, M.T., Scheler, B., Kerres, K.L., Wiedemann, G., Safavi-Rizi, V., Nordzieke, S., 2017. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. New Phytol. 216, 455-468.
    Dor, E., Joel, D.M., Kapulnik, Y., Koltai, H., Hershenhorn, J., 2011. The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234, 419-427.
    Farid, M., Shakoor, M.B., Ehsan, S., Ali, S., Zubair, M., Hanif, M., 2013. Morphological, physiological and biochemical responses of different plant species to Cd stress. Int. J. Chem. Biochem. Sci. 3, 53-60.
    Feng, M., Luo, W., Luo, S., Miao, R., Gu, M., Li, S., Xing, X., Zhang, J., Qian, J., Liu, X., et al., 2025. Strigolactones regulate sugar allocation to control rice tillering and root development via the OsSPL14-OsSHR1-OsSWEET16 pathway. Plant Biotechnol. J. 0, 1-20.
    Gobena, D., Shimels, M., Rich, P.J., Ruyter-Spira, C., Bouwmeester, H., Kanuganti, S., Mengiste, T., Ejeta, G., 2017. Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc. Natl. Acad. Sci. U. S. A. 114, 4471-4476.
    Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pages, V., Dun, E.A., Pillot, J.P., Letisse, F., Matusova, R., Danoun, S., Portais, J.C., et al., 2008. Strigolactone inhibition of shoot branching. Nature 455, 189-194.
    Gu, P., Tao, W., Tao, J., Sun, H., Hu, R., Wang, D., Zong, G., Xie, X., Ruan, W., Xu, G., 2023. The D14-SDEL1-SPX4 cascade integrates the strigolactone and phosphate signalling networks in rice. New Phytol. 239, 673-686.
    Gupta, A., Li, L., Zhu, C., Xu, K., Jia, K., Miao, Y., Li, W., Tran, L.S.P., 2024. Differential modulation of hormonal pathways by strigolactone and karrikin signaling. J. Plant Growth Regul. 104, 1197-1205.
    Gupta, A., Sinha, R., Fernandes, J.L., Abdelrahman, M., Burritt, D.J., Tran, L.S.P., 2020. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit. Rev. Biotechnol. 40, 320-340.
    Ha, C.V., Leyva-Gonzalez, M.A., Osakabe, Y., Tran, U.T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Yamaguchi, S., Dong, N.V., et al., 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. U. S. A. 111, 851-856.
    Haider, I., Andreo-Jimenez, B., Bruno, M., Bimbo, A., Flokova, K., Abuauf, H., Ntui, V.O., Guo, X., Charnikhova, T., Al-Babili, S., et al., 2018. The interaction of strigolactones with abscisic acid during the drought response in rice. J. Exp. Bot. 69, 2403-2414.
    Bouwmeester, H., Li, C., Thiombiano, B., Rahimi, M., Dong, L., 2021. Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. Plant Physiol. 185, 1292-1308.
    Hu, Q., He, Y., Wang, L., Liu, S., Meng, X., Liu, G., Jing, Y., Chen, M., Song, X., Jiang, L., et al., 2017. DWARF14, a receptor covalently linked with the active form of strigolactones, undergoes strigolactone-dependent degradation in rice. Front. Plant Sci. 8, 1935.
    Hu, Q., Liu, H., He, Y., Hao, Y., Yan, J., Liu, S., Huang, X., Yan, Z., Zhang, D., Ban, X., et al., 2024. Regulatory mechanisms of strigolactone perception in rice. Cell 187, 7551-7567.
    Hu, Q., Zhang, S., Huang, B., 2018. Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes. Plant Sci. 271, 34-39.
    Hu, Q., Zhang, S., Huang, B., 2019. Strigolactones promote leaf elongation in tall fescue through upregulation of cell cycle genes and downregulation of auxin transport genes in tall fescue under different temperature regimes. Int. J. Mol. Sci. 20, 1836.
    Ito, S., Braguy, J., Wang, J.Y., Yoda, A., Fiorilli, V., Takahashi, I., Jamil, M., Felemban, A., Miyazaki, S., Mazzarella, T., et al., 2022. Canonical strigolactones are not the major determinant of tillering but important rhizospheric signals in rice. Sci. Adv. 8, eadd1278.
    Ito, S., Ito, K., Abeta, N., Takahashi, R., Sasaki, Y., Yajima, S., 2016. Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition. Plant Signal. Behav. 11, e1126031.
    Jamil, M., Charnikhova, T., Cardoso, C., Jamil, T., Ueno, K., Verstappen, F., Asami, T., Bouwmeester, H.J., 2011. Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res. 51, 373-385.
    Jamil, M., Wang, J.Y., Yonli, D., Ota, T., Berqdar, L., Traore, H., Margueritte, O., Zwanenburg, B., Asami, T., Al-Babili, S., 2022. Striga hermonthica suicidal germination activity of potent strigolactone analogs: evaluation from laboratory bioassays to field trials. Plants 11, 1045.
    Jimenez, A., Marti, M.C., Sevilla, F., 2025. Oxidative post-translational modifications of plant antioxidant systems under environmental stress. Physiol. Plant 177, e70118.
    Kleman, J., Matusova, R., 2023. Strigolactones: current research progress in the response of plants to abiotic stress. Biologia 78, 307-318.
    Kuijer, H.N.J., Wang, J.Y., Bougouffa, S., Abrouk, M., Jamil, M., Incitti, R., Alam, I., Balakrishna, A., Alvarez, D., Votta, C., et al., 2024. Chromosome-scale pearl millet genomes reveal CLAMT1b as key determinant of strigolactone pattern and Striga susceptibility. Nat. Commun. 15, 6906.
    Lahari, Z., Van Boerdonk, S., Omoboye, O.O., Reichelt, M., Hofte, M., Gershenzon, J., Gheysen, G., Ullah, C., 2024. Strigolactone deficiency induces jasmonate, sugar and flavonoid phytoalexin accumulation enhancing rice defense against the blast fungus Pyricularia oryzae. New Phytol. 241, 827-844.
    Lechat, M.M., Brun, G., Montiel, G., Veronesi, C., Simier, P., Thoiron, S., Pouvreau, J.B., Delavault, P., 2015. Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. J. Exp. Bot. 66, 3129-3140.
    Li, C., Dong, L., Durairaj, J., Guan, J.C., Yoshimura, M., Quinodoz, P., Horber, R., Gaus, K., Li, J., Setotaw, Y.B., et al., 2023. Maize resistance to witchweed through changes in strigolactone biosynthesis. Science 379, 94-99.
    Li, C., Haider, I., Wang, J.Y., Quinodoz, P., Suarez Duran, H.G., Mendez, L.R., Horber, R., Fiorilli, V., Votta, C., Lanfranco, L., et al., 2024. OsCYP706C2 diverts rice strigolactone biosynthesis to a noncanonical pathway branch. Sci. Adv. 10, eadq3942.
    Li, Q., Martin-Fontecha, E.S., Khosla, A., White, A.R.F., Chang, S., Cubas, P., Nelson, D.C., 2022. The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress. Plant Commun. 3, 100303.
    Li, S., Joo, Y., Cao, D., Li, R., Lee, G., Halitschke, R., Baldwin, G., Baldwin, I.T., Wang, M., 2020a. Strigolactone signaling regulates specialized metabolism in tobacco stems and interactions with stem-feeding herbivores. PLoS Biol. 18, e3000830.
    Li, W., Herrera-Estrella, L., Tran, L.S.P., 2019. Do cytokinins and strigolactones crosstalk during drought adaptation? Trends Plant Sci. 24, 669-672.
    Li, W., Nguyen, K.H., Chu, H.D., Ha, C.V., Watanabe, Y., Osakabe, Y., Leyva-Gonzalez, M.A., Sato, M., Toyooka, K., Voges, L.J.P.G., 2017. The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet. 13, e1007076.
    Li, W., Nguyen, K.H., Chu, H.D., Watanabe, Y., Osakabe, Y., Sato, M., Toyooka, K., Seo, M., Tian, L., Tian, C., et al., 2020b. Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE 2 in drought adaptation of Arabidopsis thaliana. Plant J. 103, 111-127.
    Li, W., Nguyen, K.H., Tran, C.D., Watanabe, Y., Tian, C., Yin, X., Li, K., Yang, Y., Guo, J., Miao, Y., et al., 2020c. Negative roles of strigolactone-related SMXL6, 7 and 8 proteins in drought resistance in Arabidopsis. Biomolecules 10, 607.
    Lian, Y., Lian, C., Wang, L., Li, Z., Yuan, G., Xuan, L., Gao, H., Wu, H., Yang, T., Wang, C., 2023. Suppressor of MAX2 like 6, 7, and 8 interact with DDB1 binding WD repeat domain hypersensitive to ABA deficient 1 to regulate the drought tolerance and target SUCROSE NONFERMENTING 1 RELATED PROTEIN KINASE 2.3 to abscisic acid response in Arabidopsis. Biomolecules 13, 1406.
    Ling, F., Su, Q., Jiang, H., Cui, J., He, X., Wu, Z., Zhang, Z., Liu, J., Zhao, Y., 2020. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci. Rep. 10, 1-8.
    Liu, F., Rice, J.H., Lopes, V., Grewal, P., Lebeis, S.L., Hewezi, T., Staton, M.E., 2020. Overexpression of strigolactone-associated genes exerts fine-tuning selection on soybean rhizosphere bacterial and fungal microbiome. Phytobiomes J. 4, 239-251.
    Liu, J., He, H., Vitali, M., Visentin, I., Charnikhova, T., Haider, I., Schubert, A., Ruyter-Spira, C., Bouwmeester, H.J., Lovisolo, C., et al., 2015. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241, 1435-1451.
    Liu, T., Zhang, X., Zhang, H., Cheng, Z., Liu, J., Zhou, C., Luo, S., Luo, W., Li, S., Xing, X., et al., 2022. Dwarf and High Tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. Plant Cell 34, 3301-3318.
    Liu, X., Hu, Q., Yan, J., Sun, K., Liang, Y., Jia, M., Meng, X., Fang, S., Wang, Y., Jing, Y., 2020. ζ-Carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol. Plant 13, 1784-1801.
    Liu, Z., Li, Y., Wang, J., He, X., Tian, C., 2015. Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host. J. Agric. Sci. 153, 602-614.
    Lopez-Bucio, J., Cruz-RamiRez, A., Herrera-Estrella, L., 2003. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280-287.
    Lopez-Raez, J.A., Charnikhova, T., Gomez-Roldan, V., Matusova, R., Kohlen, W., De Vos, R., Verstappen, F., Puech-Pages, V., Becard, G., Mulder, P., et al., 2008. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178, 863-874.
    Lovejoy, C., Smemo, K.A., 2021. Strigolactone significantly increases lead uptake by dwarf sunflower (Helianthus annuus). Bioremediat J. 25, 191-196.
    Luo, L., Wang, H., Liu, X., Hu, J., Zhu, X., Pan, S., Qin, R., Wang, Y., Zhao, P., Fan, X., et al., 2018. Strigolactones affect the translocation of nitrogen in rice. Plant Sci. 270, 190-197.
    Lv, S., Zhang, Y., Li, C., Liu, Z., Yang, N., Pan, L., Wu, J., Wang, J., Yang, J., Lv, Y., 2018. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol. 217, 290-304.
    Ma, N., Hu, C., Wan, L., Hu, Q., Xiong, J., Zhang, C., 2017. Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front. Plant Sci. 8, 1671.
    Marzec, M., Daszkowska-Golec, A., Collin, A., Melzer, M., Eggert, K., Szarejko, I., 2020. Barley strigolactone signalling mutant hvd14.d reveals the role of strigolactones in abscisic acid-dependent response to drought. Plant Cell Environ. 43, 2239-2253.
    Marzec, M., Muszynska, A., Gruszka, D., 2013. The role of strigolactones in nutrient-stress responses in plants. Int. J. Mol. Sci. 14, 9286-9304.
    Mashiguchi, K., Seto, Y., Onozuka, Y., Suzuki, S., Takemoto, K., Wang, Y., Dong, L., Asami, K., Noda, R., Kisugi, T., 2022. A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 119, e2111565119.
    Matusova, R., Rani, K., Verstappen, F.W.A., Franssen, M.C.R., Beale, M.H., Bouwmeester, H.J., 2005. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139, 920-934.
    Mayzlish-Gati, E., De-Cuyper, C., Goormachtig, S., Beeckman, T., Vuylsteke, M., Brewer, P.B., Beveridge, C.A., Yermiyahu, U., Kaplan, Y., Enzer, Y., et al., 2012. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol. 160, 1329-1341.
    Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., Ju, Y., Fang, Y., 2019. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol. Bioch. 135, 99-110.
    Mishra, S., Upadhyay, S., Shukla, R.K., 2017. The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants. Front. Physiol. 7, 691.
    Mori, N., Nomura, T., Akiyama, K., 2020. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus. Planta 251, 40.
    Mostofa, M.G., Ha, C.V., Rahman, M.M., Nguyen, K.H., Keya, S.S., Watanabe, Y., Itouga, M., Hashem, A., Abd_Allah, E.F., Fujita, M., et al., 2021a. Strigolactones modulate cellular antioxidant defense mechanisms to mitigate arsenate toxicity in rice shoots. Antioxidants 10, 1815.
    Mostofa, M.G., Li, W., Nguyen, K.H., Fujita, M., Tran, L.S.P., 2018. Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ. 41, 2227-2243.
    Mostofa, M.G., Rahman, M.M., Nguyen, K.H., Li, W., Watanabe, Y., Tran, C.D., Zhang, M., Itouga, M., Fujita, M., Tran, L.S.P., 2021b. Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. J. Hazard. Mater. 415, 125589.
    Nasir, F., Shi, S., Tian, L., Chang, C., Ma, L., Li, X., Gao, Y., Tian, C., 2019. Strigolactones shape the rhizomicrobiome in rice (Oryza sativa). Plant Sci. 286, 118-133.
    Nishiyama, R., Watanabe, Y., Leyva-Gonzalez, M.A., Van Ha, C., Fujita, Y., Tanaka, M., Seki, M., Yamaguchi-Shinozaki, K., Shinozaki, K., Herrera-Estrella, L., et al., 2013. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc. Natl. Acad. Sci. U. S. A. 110, 4840-4845.
    Omoarelojie, L.O., Kulkarni, M.G., Finnie, J.F., Pospisil, T., Strnad, M., Van Staden, J., 2020. Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiol. Bioch. 155, 965-979.
    Omoarelojie, L.O., Kulkarni, M.G., Finnie, J.F., Van Staden, J., 2021. Strigolactone analog (rac-GR24) enhances chilling tolerance in mung bean seedlings. S. Afr. J. Bot. 140, 173-181.
    Piisila, M., Keceli, M.A., Brader, G., Jakobson, L., Joesaar, I., Sipari, N., Kollist, H., Palva, E.T., Kariola, T., 2015. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol. 15, 1-17.
    Qiu, C., Zhang, C., Wang, N., Mao, W., Wu, F., 2021. Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environ. Pollut. 273, 116486.
    Ren, C., Kong, C., Xie, Z., 2018. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol. 18, 1-10.
    Riyazuddin, R., Nisha, N., Ejaz, B., Khan, M.I.R., Kumar, M., Ramteke, P.W., Gupta, R., 2022. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 12, 43.
    Rodenburg, J., Demont, M., Zwart, S.J., Bastiaans, L., 2016. Parasitic weed incidence and related economic losses in rice in Africa. Agric. Ecosyst. Environ. 235, 306-317.
    Ruiz-Lozano, J.M., Aroca, R., Zamarreno, A.M., Molina, S., Andreo-Jimenez, B., Porcel, R., Garcia-Mina, J.M., Ruyter-Spira, C., Lopez-Raez, J.A., 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ. 39, 441-452.
    Ruyter-Spira, C., Kohlen, W., Charnikhova, T., Van Zeijl, A., Van Bezouwen, L., De Ruijter, N., Cardoso, C., Lopez-Raez, J.A., Matusova, R., Bours, R., 2011. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol. 155, 721-734.
    Saeed, M., Kausar, M.A., Singh, R., Siddiqui, A.J., Akhter, A., 2020. The role of glyoxalase in glycation and carbonyl stress induced metabolic disorders. Curr. Protein Pept. Sci. 21, 846-859.
    Sarwar, Y., Shahbaz, M., 2020. Modulation in growth, photosynthetic pigments, gas exchange attributes and inorganic ions in sunflower (Helianthus annuus L.) by strigolactones (GR24) achene priming under saline conditions. Pak. J. Bot. 52, 23-31.
    Sedaghat, M., Tahmasebi-Sarvestani, Z., Emam, Y., Mokhtassi-Bidgoli, A., 2017. Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiol. Bioch. 119, 59-69.
    Shabek, N., Ticchiarelli, F., Mao, H., Hinds, T.R., Leyser, O., Zheng, N., 2018. Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling. Nature 563, 652-656.
    Sharifi, P., Bidabadi, S.S., 2020. Strigolactone could enhances gas-exchange through augmented antioxidant defense system in Salvia nemorosa L. plants subjected to saline conditions stress. Ind. Crop Prod. 151, 112460.
    Shi, J., Mei, C., Ge, F., Hu, Q., Ban, X., Xia, R., Xin, P., Cheng, S., Zhang, G., Nie, J., et al., 2025. Resistance to Striga parasitism through reduction of strigolactone exudation. Cell 188, 1955-1966.
    Shindo, M., Shimomura, K., Yamaguchi, S., Umehara, M., 2018. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct 2, 1-9.
    Shindo, M., Yamamoto, S., Shimomura, K., Umehara, M., 2020. Strigolactones decrease leaf angle in response to nutrient deficiencies in rice. Front. Plant Sci. 11, 135.
    Siame, B.A., Weerasuriya, Y., Wood, K., Ejeta, G., Butler, L.G., 1993. Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J. Agr. Food Chem. 41, 1486-1491.
    Singh, A., Roychoudhury, A., 2023. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Rep. 42, 961-974.
    Song, Y., Lv, D., Jiang, M., E, Z., Han, Y., Sun, Y., Zhu, S., Chen, J., Zhao, T., 2023. Exogenous strigolactones enhance salinity tolerance in cotton (Gossypium hirsutum L.) seedlings. Plant Stress 10, 100235.
    Stes, E., Depuydt, S., De Keyser, A., Matthys, C., Audenaert, K., Yoneyama, K., Werbrouck, S., Goormachtig, S., Vereecke, D., 2015. Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. J. Exp. Bot. 66, 5123-5134.
    Sun, H., Guo, X., Qi, X., Feng, F., Xie, X., Zhang, Y., Zhao, Q., 2021. SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supply. Plant J. 106, 649-660.
    Sun, H., Guo, X., Zhu, X., Gu, P., Zhang, W., Tao, W., Wang, D., Wu, Y., Zhao, Q., Xu, G., et al., 2023. Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice. Mol. Plant 16, 588-598.
    Sun, H., Li, W., Burritt, D.J., Tian, H., Zhang, H., Liang, X., Miao, Y., Mostofa, M.G., Tran, L.S.P., 2022. Strigolactones interact with other phytohormones to modulate plant root growth and development. Crop J. 10, 1517-1527.
    Sun, H., Tao, J., Liu, S., Huang, S., Chen, S., Xie, X., Yoneyama, K., Zhang, Y., Xu, G., 2014. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J. Exp. Bot. 65, 6735-6746.
    Tai, Z., Yin, X., Fang, Z., Shi, G., Lou, L., Cai, Q., 2017. Exogenous GR24 alleviates cadmium toxicity by reducing cadmium uptake in switchgrass (Panicum virgatum) seedlings. Int. J. Environ. Res. Public Health 14, 852.
    Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P., Tsuchiya, Y., 2011. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol. 53, 107-117.
    Torres-Vera, R., Garcia, J.M., Pozo, M.J., Lopez-Raez, J.A., 2014. Do strigolactones contribute to plant defence? Mol. Plant Pathol. 15, 211-216.
    Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N., Yamaguchi, S., 2010. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 51, 1118-1126.
    Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., et al., 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195-200.
    Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter-Spira, C., Novak, O., Strnad, M., Lovisolo, C., Schubert, A., Cardinale, F., 2016. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 212, 954-963.
    Wakabayashi, T., Hamana, M., Mori, A., Akiyama, R., Ueno, K., Osakabe, K., Osakabe, Y., Suzuki, H., Takikawa, H., Mizutani, M., et al., 2019. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci. Adv. 5, eaax9067.
    Wakabayashi, T., Ishiwa, S., Shida, K., Motonami, N., Suzuki, H., Takikawa, H., Mizutani, M., Sugimoto, Y., 2021. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. Plant Physiol. 185, 902-913.
    Wakabayashi, T., Nakayama, M., Kitano, Y., Homma, M., Miura, K., Takikawa, H., Mizutani, M., Sugimoto, Y., 2023. Discovery of strigol synthase from cotton (Gossypium hirsutum): the enzyme behind the first identified germination stimulant for Striga. Plants, People, Planet 7, 354-359.
    Wakabayashi, T., Shida, K., Kitano, Y., Takikawa, H., Mizutani, M., Sugimoto, Y., 2020. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta 251, 1-6.
    Wang, L., Wang, B., Jiang, L., Liu, X., Li, X., Lu, Z., Meng, X., Wang, Y., Smith, S.M., Li, J., 2015. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27, 3128-3142.
    Wang, M., Zhang, S., Ding, F., 2020. Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants. Antioxidants 9, 218.
    Wang, X., Li, Z., Shi, Y., Liu, Z., Zhang, X., Gong, Z., Yang, S., 2023. Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression. EMBO J. 42, e112999.
    Wang, Y., Durairaj, J., Suarez Duran, H.G., Van Velzen, R., Flokova, K., Liao, C.Y., Chojnacka, A., Macfarlane, S., Schranz, M.E., Medema, M.H., et al., 2022. The tomato cytochrome P450 CYP712G1 catalyzes the double oxidation of orobanchol en route to the rhizosphere signaling strigolactone, solanacol. New Phytol. 235, 1884-1899.
    Wang, Y., Duran, H.G.S., Van Haarst, J.C., Schijlen, E.G.W.M., Ruyter-Spira, C., Medema, M.H., Dong, L., Bouwmeester, H.J., 2021. The role of strigolactones in P deficiency induced transcriptional changes in tomato roots. BMC Plant Biol. 21, 349.
    Wang, Y., Li, D., Li, Z., Cui, Z., Ye, X., 2024. Functional analysis of a novel endo-β-1,6-glucanase MoGlu16 and its application in detecting cell wall β-1,6-glucan of Magnaporthe oryzae. Front. Microbiol. 15, 1429065.
    Wu, S., Li, Y., 2021. A unique sulfotransferase-involving strigolactone biosynthetic route in sorghum. Front. Plant Sci. 12, 793459.
    Wu, S., Zhou, A., Hiugano, K., Yoda, A., Xie, X., Yamane, K., Miura, K., Nomura, T., Li, Y., 2023. Identification of a Prunus MAX1 homolog as a unique strigol synthase. New Phytol. 239, 1819-1833.
    Xu, E., Chai, L., Zhang, S., Yu, R., Zhang, X., Xu, C., Hu, Y., 2021. Catabolism of strigolactones by a carboxylesterase. Nat. Plants 7, 1495-1504.
    Xu J., Zhou W., Li W., Tran L.P., Shu K., 2025. Phytoparasite avoidance: manipulation of strigolactone exudation, not biosynthesis. J. Integr. Plant Biol. 67, 1991-1993.
    Yamada, Y., Furusawa, S., Nagasaka, S., Shimomura, K., Yamaguchi, S., Umehara, M., 2014. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240, 399-408.
    Yao, R., Ming, Z., Yan, L., Li, S., Wang, F., Ma, S., Yu, C., Yang, M., Chen, L., Chen, L., et al., 2016. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536, 469-473.
    Yao, R., Wang, L., Li, Y., Chen, L., Li, S., Du, X., Wang, B., Yan, J., Li, J., Xie, D., 2018. Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. J. Exp. Bot. 69, 2355-2365.
    Yi, F., Song, A., Cheng, K., Liu, J., Wang, C., Shao, L., Wu, S., Wang, P., Zhu, J., Liang, Z., et al., 2023. Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiol. 192, 945-966.
    Yi, C., Wang, X., Chen, Q., Callahan, D.L., Fournier-Level, A., Whelan, J., Jost, R., 2021. Diverse phosphate and auxin transport loci distinguish phosphate tolerant from sensitive Arabidopsis accessions. Plant Physiol. 187, 2656-2673.
    Yoda, A., Mori, N., Akiyama, K., Kikuchi, M., Xie, X., Miura, K., Yoneyama, K., Sato-Izawa, K., Yamaguchi, S., Yoneyama, K., et al., 2021. Strigolactone biosynthesis catalyzed by cytochrome P450 and sulfotransferase in sorghum. New Phytol. 232, 1999-2010.
    Yoda, A., Xie, X., Yoneyama, K., Miura, K., Mcerlean, C., Nomura, T., 2023. A stereoselective strigolactone biosynthesis catalyzed by a 2-oxoglutarate-dependent dioxygenase in sorghum. Plant Cell Physiol. 64, 1034-1045.
    Yoneyama, K., Akiyama, K., Brewer, P.B., Mori, N., Kawano-Kawada, M., Haruta, S., Nishiwaki, H., Yamauchi, S., Xie, X., Umehara, M., 2020. Hydroxyl carlactone derivatives are predominant strigolactones in Arabidopsis. Plant Direct 4, e00219.
    Yoneyama, K., Mori, N., Sato, T., Yoda, A., Xie, X., Okamoto, M., Iwanaga, M., Ohnishi, T., Nishiwaki, H., Asami, T., et al., 2018. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytol. 218, 1522-1533.
    Yoneyama, K., Xie, X., Kim, H.I., Kisugi, T., Nomura, T., Sekimoto, H., Yokota, T., Yoneyama, K., 2012. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235, 1197-1207.
    Yoneyama, K., Xie, X., Kusumoto, D., Sekimoto, H., Sugimoto, Y., Takeuchi, Y., Yoneyama, K., 2007a. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227, 125-132.
    Yoneyama, K., Yoneyama, K., Takeuchi, Y., Sekimoto, H., 2007b. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225, 1031-1038.
    Yuan, K., Zhang, H., Yu, C., Luo, N., Yan, J., Zheng, S., Hu, Q., Zhang, D., Kou, L., Meng, X., 2023. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. Mol. Plant 16, 1811-1831.
    Zhang, P., Jackson, E., Li, X., Zhang, Y., 2025. Salicylic acid and jasmonic acid in plant immunity. Hortic. Res. 12, uhaf082.
    Zhang, X., Zhang, L., Sun, Y., Zheng, S., Wang, J., Zhang, T., 2020. Hydrogen peroxide is involved in strigolactone induced low temperature stress tolerance in rape seedlings (Brassica rapa L.). Plant Physiol. Bioch. 157, 402-415.
    Zhang, Y., Lv, S., Wang, G., 2018. Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signal. Behav. 13, e1444322.
    Zhang, Y., Van Dijk, A.D., Scaffidi, A., Flematti, G.R., Hofmann, M., Charnikhova, T., Verstappen, F., Hepworth, J., Van Der Krol, S., Leyser, O., 2014. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10, 1028-1033.
    Zhou, A., Kane, A., Wu, S., Wang, K., Santiago, M., Ishiguro, Y., Yoneyama, K., Palayam, M., Shabek, N., Xie, X., 2025. Evolution of interorganismal strigolactone biosynthesis in seed plants. Science 387, eadp0779.
    Zhou, F., Lin, Q., Zhu, L., Ren, Y., Zhou, K., Shabek, N., Wu, F., Mao, H., Dong, W., Gan, L., et al., 2013. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504, 406-410.
    Zhou, H., Hua, J., Zhang, J., Luo, S., 2022. Negative interactions balance growth and defense in plants confronted with herbivores or pathogens. J. Agr. Food Chem. 70, 12723-12732.
    Zulfiqar, H., Shahbaz, M., Ahsan, M., Nafees, M., Nadeem, H., Akram, M., Maqsood, A., Ahmar, S., Kamran, M., Alamri, S., et al., 2021. Strigolactone (GR24) induced salinity tolerance in sunflower (Helianthus annuus L.) by ameliorating morpho-physiological and biochemical attributes under in vitro conditions. J. Plant Growth Regul. 40, 2079-2091.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return