|
Buckler, E.S., Holland, J.B., Bradbury, P.J., Acharya, C.B., Brown, P.J., Browne, C., Ersoz, E., Flint-Garcia, S., Garcia, A., Glaubitz, J.C., et al., 2009. The genetic architecture of maize flowering time. Science 325, 714-718.
|
|
Chuck, G.S., Brown, P.J., Meeley, R., Hake, S., 2014. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc. Natl. Acad. Sci. U. S. A. 111, 18775-18780.
|
|
Flint-Garcia, S.A., Jampatong, C., Darrah, L.L., McMullen, M.D., 2003. Quantitative trait locus analysis of stalk strength in four maize populations. Crop Sci. 43, 13-22.
|
|
Flint-Garcia, S.A., Thuillet, A.C., Yu, J.M., Pressoir, G., Romero, S.M., Mitchell, S.E., Doebley, J., Kresovich, S., Goodman, M.M., Buckler, E.S., 2005. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 44, 1054-1064.
|
|
Fujioka, S., Yamane, H., Spray, C.R., Katsumi, M., Phinney, B.O., Gaskin, P., Macmillan, J., Takahashi, N., 1988. The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc. Natl. Acad. Sci. U. S. A. 85, 9031-9035.
|
|
Hu, H., Liu, W., Fu, Z., Homann, L., Technow, F., Wang, H., Song, C., Li, S., Melchinger, A.E., Chen, S., 2013. QTL mapping of stalk bending strength in a recombinant inbred line maize population. Theor. Appl. Genet. 126, 2257-2266.
|
|
Hung, H., Shannon, L.M., Tian, F., Bradbury, P.J., Chen, C., Flint-Garcia, S.A., McMullen, M.D., Ware, D., Buckler, E.S., Doebley, J.F., et al., 2012. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc. Natl. Acad. Sci. U. S. A. 109, E1913-E1921.
|
|
Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 536-541.
|
|
Klimyuk, V.I., Persello-Cartieaux, F., Havaux, M., Contard-David, P., Schuenemann, D., Meiherhoff, K., Gouet, P., Jones, J., Hoffman, N.E., Nussaume, L., 1999. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11, 87-99.
|
|
Lawit, S.J., Wych, H.M., Xu, D., Kundu, S., Tomes, D.T., 2010. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol. 51, 1854-1868.
|
|
Li, L., Hill-Skinner, S., Liu, S., Beuchle, D., Tang, H.M., Yeh, C., Nettleton, D., Schnable, P.S., 2015. The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. Plant J. 81, 493-504.
|
|
Li, Y., 2017. The function of different alleles and mechanism underlying transcription regulatory of ZmCCT, in Ph. D. thesis: China Agricultural University.
|
|
Li, Y., Wang, J., Zhong, S., Huo, Q., Wang, Q., Shi, Y., Liu, H., Liu, J., Song, Y., Fang, X., et al., 2024. MADS-box encoding gene Tunicate1 positively controls maize yield by increasing leaf number above the ear. Nat. Commun. 15, 9799.
|
|
Lipka, A.E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P.J., Gore, M.A., Buckler, E.S., Zhang, Z., 2012. GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397-2399.
|
|
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods 25, 402-408.
|
|
Lou, G., Chen, P., Li, P., Gao, H., Xiong, J., Wan, S., Zheng, Y., Wang, Y., Alam, M., Chen, Y., et al., 2025. Antagonistic Ghd7-OsNAC42 complexes modulate carbon and nitrogen metabolism to achieves superior quality and high yield in rice. Adv. Sci. 17.
|
|
Peiffer, J.A., Flint-Garcia, S.A., De Leon, N., McMullen, M.D., Kaeppler, S.M., Buckler, E.S., 2013. The genetic architecture of maize stalk strength. PLoS One 8, 14.
|
|
Qiang, Z., Sun, H., Ge, F., Li, W., Li, C., Wang, S., Zhang, B., Zhu, L., Zhang, S., Wang, X., et al., 2022. The transcription factor ZmMYB69 represses lignin biosynthesis by activating ZmMYB31/42 expression in maize. Plant Physiol. 189, 1916-1919.
|
|
Robertson, D.J., Julias, M., Lee, S.Y., Cook, D.D., 2017. Maize stalk lodging: morphological determinants of stalk strength. Crop Sci. 57, 926-934.
|
|
Sekhon, R.S., Joyner, C.N., Ackerman, A.J., McMahan, C.S., Cook, D.D., Robertson, D.J., 2020. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Res. 249, 10.
|
|
Silva, L.D.C.E., Wang, S., Zeng, Z., 2012. Composite interval mapping and multiple interval mapping: procedures and guidelines for using windows QTL cartographer. Methods Mol. Biol. 871, 75-119.
|
|
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2011. Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure. (Golden, CO: National Renewable Energy Laboratory).
|
|
Wang, C., Yang, Q., Wang, W., Li, Y., Guo, Y., Zhang, D., Ma, X., Song, W., Zhao, J., Xu, M., 2017. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to gibberella stalk rot in maize. New Phytol. 215, 1503-1515.
|
|
Wang, Q., Su, Q., Nian, J., Zhang, J., Guo, M., Dong, G., Hu, J., Wang, R., Wei, C., Li, G., et al., 2021. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Mol. Plant 14, 1012-1023.
|
|
Wang, Q., Wang, M., Xia, A., Wang, J., Wang, Z., Xu, T., Jia, D., Lu, M., Tan, W., Luo, J., et al., 2025. Natural variation in ZmNRT2.5 modulates husk leaf width and promotes seed protein content in maize. Plant Biotechnol. J. 23, 1039-1052.
|
|
Wang, X., Shi, Z., Zhang, R., Sun, X., Wang, J., Wang, S., Zhang, Y., Zhao, Y., Su, A., Li, C., et al., 2020. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize. BMC Plant Biol. 20, 12.
|
|
Yang, Q., Li, Z., Li, W., Ku, L., Wang, C., Ye, J., Li, K., Yang, N., Li, Y., Zhong, T., et al., 2013. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc. Natl. Acad. Sci. U. S. A. 110, 16969-16974.
|
|
Zhai, J., Zhang, Y., Zhang, G., Tian, M., Xie, R., Ming, B., Hou, P., Wang, K., Xue, J., Li, S., 2022. Effects of nitrogen fertilizer management on stalk lodging resistance traits in summer maize. Agriculture-Basel 12, 16.
|
|
Zhang, P., Gu, S., Wang, Y., Yang, R., Yan, Y., Zhang, S., Sheng, D., Cui, T., Huang, S., Wang, P., 2021. Morphological and mechanical variables associated with lodging in maize. Field Crops Res. 269, 14.
|
|
Zhang, Y., Zhou, Z., Xiao, S., Li, Y., Hao, S., Que, F., Liu, Z., Shi, L., Shi, Y., Zhang, Z., et al., 2025. The nuclear transcription factor ZmCCT positively regulates salt and low nitrogen stress response in maize. Plant Stress 16, 100893.
|
|
Zhang, Z., Zhang, X., Lin, Z., Wang, J., Liu, H., Zhou, L., Zhong, S., Li, Y., Zhu, C., Lai, J., et al., 2020. A large transposon insertion in the stiff1 promoter increases stalk strength in maize. Plant Cell 32, 152-165.
|
|
Zhang, Z., Zhang, X., Lin, Z., Wang, J., Xu, M., Lai, J., Yu, J., Lin, Z., 2018. The genetic architecture of nodal root number in maize. Plant J. 93, 1032-1044.
|
|
Zheng, Z., Wang, B., Zhuo, C., Xie, Y., Zhang, X., Liu, Y., Zhang, G., Ding, H., Zhao, B., Tian, M., Xu, M., Kong, D., Shen, R., Liu, Q., Wu, G., Huang, J., Wang, H., 2023. Local auxin biosynthesis regulates brace root angle and lodging resistance in maize. New Phytol. 238, 142-154.
|
|
Zhong, S., Liu, H., Li, Y., Lin, Z., 2021. Opposite response of maize ZmCCT to photoperiod due to transposon jumping. Theor. Appl. Genet. 134, 2841-2855.
|