9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 11
Nov.  2025
Turn off MathJax
Article Contents

Unlocking soybean potential: genetic resources and omics for breeding

doi: 10.1016/j.jgg.2025.02.004
Funds:

This work was supported by the National Key Research and Development Program of China (2022YFF1003301, 2023YFF1000101, and 2022YFE0130200) and the Taishan Scholars Program.

  • Received Date: 2024-12-24
  • Accepted Date: 2025-02-12
  • Rev Recd Date: 2025-02-11
  • Publish Date: 2025-02-19
  • Soybean (Glycine max) is a vital foundation of global food security, providing a primary source of high-quality protein and oil for human consumption and animal feed. The rising global population has significantly increased the demand for soybeans, emphasizing the urgency of developing high-yield, stress-tolerant, and nutritionally superior cultivars. The extensive collection of soybean germplasm resources—including wild relatives, landraces, and cultivars—represents a valuable reservoir of genetic diversity critical for breeding advancements. Recent breakthroughs in genomic technologies, particularly high-throughput sequencing and multi-omics approaches, have revolutionized the identification of key genes associated with essential agronomic traits within these resources. These innovations enable precise and strategic utilization of genetic diversity, empowering breeders to integrate traits that improve yield potential, resilience to biotic and abiotic stresses, and nutritional quality. This review highlights the critical role of genetic resources and omics-driven innovations in soybean breeding. It also offers insights into strategies for accelerating the development of elite soybean cultivars to meet the growing demands of global soybean production.
  • loading
  • An, Y.-q.C., Goettel, W., Han, Q., Bartels, A., Liu, Z., Xiao, W., 2017. Dynamic changes of genome-wide DNA methylation during soybean seed development. Sci. Rep. 7, 12263.
    Bai, M., Yuan, J., Kuang, H., Gong, P., Li, S., Zhang, Z., Liu, B., Sun, J., Yang, M., Yang, L., et al., 2020. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol. J. 18, 721-731.
    Bolon, Y.-T., Haun, W.J., Xu, W.W., Grant, D., Stacey, M.G., Nelson, R.T., Gerhardt, D.J., Jeddeloh, J.A., Stacey, G., Muehlbauer, G.J., et al., 2011. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol. 156, 240-253.
    Cao, L., Yu, Y., DuanMu, H., Chen, C., Duan, X., Zhu, P., Chen, R., Li, Q., Zhu, Y., Ding, X., 2016. A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis. BMC Plant Biol. 16, 1-14.
    Carter, T., Hymowitz, T., Nelson, R., 2004. Biogeography, local adaptation, Vavilov, and genetic diversity in soybean, in: Werner, D. (Ed.) Biological Resources and Migration. Springer, Berlin, Heidelberg, pp. 47-59.
    Cervantes-Perez, S.A., Zogli, P., Amini, S., Thibivilliers, S., Tennant, S., Hossain, M.S., Xu, H., Meyer, I., Nooka, A., Ma, P., et al., 2024. Single-cell transcriptome atlases of soybean root and mature nodule reveal new regulatory programs controlling the nodulation process. Plant Commun. 5, 100984.
    Chen, Y., Nelson, R.L., 2004. Genetic variation and relationships among cultivated, wild, and semiwild soybean. Crop Sci. 44, 316-325.
    Cui, Y., Barampuram, S., Stacey, M.G., Hancock, C.N., Findley, S., Mathieu, M., Zhang, Z., Parrott, W.A., Stacey, G., 2013. Tnt1 retrotransposon mutagenesis: a tool for soybean functional genomics. Plant Physiol. 161, 36-47.
    Diers, B.W., Keim, P., Fehr, W., Shoemaker, R., 1992. RFLP analysis of soybean seed protein and oil content. Theor. Appl. Genet. 83, 608-612.
    Diez, C.M., Roessler, K., Gaut, B.S., 2014. Epigenetics and plant genome evolution. Curr. Opin. Plant Biol. 18, 1-8.
    Dong, Y., Yang, X., Liu, J., Wang, B.-H., Liu, B.-L., Wang, Y.-Z., 2014. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat. Commun. 5, 3352.
    Espina, M.J., Ahmed, C.S., Bernardini, A., Adeleke, E., Yadegari, Z., Arelli, P., Pantalone, V., Taheri, A., 2018. Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean. Front. Plant Sci. 9, 394.
    Espina, M.J.C., Lovell, J.T., Jenkins, J., Shu, S., Sreedasyam, A., Jordan, B.D., Webber, J., Boston, L., Bruna, T., Talag, J., et al., 2024. Assembly, comparative analysis, and utilization of a single haplotype reference genome for soybean. Plant J. 120, 1221-1235.
    Fang, C., Li, W., Li, G., Wang, Z., Zhou, Z., Ma, Y., Shen, Y., Li, C., Wu, Y., Zhu, B., et al., 2013. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J. Genet. Genomics 40, 93-96.
    Fang, C., Ma, Y., Wu, S., Liu, Z., Wang, Z., Yang, R., Hu, G., Zhou, Z., Yu, H., Zhang, M., et al., 2017. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 18, 1-14.
    Fang, C., Yang, M., Tang, Y., Zhang, L., Zhao, H., Ni, H., Chen, Q., Meng, F., Jiang, J., 2023. Dynamics of cis-regulatory sequences and transcriptional divergence of duplicated genes in soybean. Proc. Natl. Acad. Sci. U. S. A 120, e2303836120.
    Fei, S., Hassan, M.A., Xiao, Y., Rasheed, A., Xia, X., Ma, Y., Fu, L., Chen, Z., He, Z., 2022. Application of multi-layer neural network and hyperspectral reflectance in genome-wide association study for grain yield in bread wheat. Field Crops Res. 289, 108730.
    Feng, P., Sun, X., Liu, X., Li, Y., Sun, Q., Lu, H., Li, M., Ding, X., Dong, Y., 2022. Epigenetic regulation of plant tolerance to salt stress by histone acetyltransferase GsMYST1 from wild soybean. Front. Plant Sci. 13, 860056.
    Funatsuki, H., Suzuki, M., Hirose, A., Inaba, H., Yamada, T., Hajika, M., Komatsu, K., Katayama, T., Sayama, T., Ishimoto, M., et al., 2014. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc. Natl. Acad. Sci. U. S. A 111, 17797-17802.
    Garg, V., Khan, A.W., Fengler, K., Llaca, V., Yuan, Y., Vuong, T.D., Harris, C., Chan, T.F., Lam, H.M., Varshney, R.K., et al., 2023. Near-gapless genome assemblies of Williams 82 and Lee cultivars for accelerating global soybean research. Plant Genome 16, e20382.
    Gepts, P., Papa, R., 2003. Possible effects of (trans) gene flow from crops on the genetic diversity from landraces and wild relatives. Environ. Biosaf. Res. 2, 89-103.
    Gu, X., Ding, J., Liu, W., Yang, X., Yao, L., Gao, X., Zhang, M., Yang, S., Wen, J., 2020. Comparative genomics and association analysis identifies virulence genes of Cercospora sojina in soybean. BMC Genom. 21, 1-17.
    Hesler, L.S., 2013. Resistance to soybean aphid among wild soybean lines under controlled conditions. Crop Prot. 53, 139-146.
    Hu, Y., Liu, Y., Lu, L., Tao, J.J., Cheng, T., Jin, M., Wang, Z.Y., Wei, J.J., Jiang, Z.H., Sun, W.C., et al., 2023. Global analysis of seed transcriptomes reveals a novel PLATZ regulator for seed size and weight control in soybean. New Phytol. 240, 2436-2454.
    Huang, M.-K., Zhang, L., Zhou, L.-M., Yung, W.-S., Li, M.-W., Lam, H.-M., 2021. Genomic features of open chromatin regions (OCRs) in wild soybean and their effects on gene expressions. Genes-Basel 12, 640.
    Huang, M., Zhang, L., Yung, W.-S., Hu, Y., Wang, Z., Li, M.-W., Lam, H.-M., 2023. Molecular evidence for enhancer-promoter interactions in light responses of soybean seedlings. Plant Physiol. 193, 2287-2291.
    Huang, M., Zhang, L., Zhou, L., Yung, W.-S., Wang, Z., Xiao, Z., Wang, Q., Wang, X., Li, M.-W., Lam, H.-M., 2022. Identification of the accessible chromatin regions in six tissues in the soybean. Genomics 114, 110364.
    Huang, Y., Koo, D.-H., Mao, Y., Herman, E.M., Zhang, J., Schmidt, M.A., 2024. A complete reference genome for the soybean cv. Jack. Plant Commun. 5, 100984.
    Hyten, D.L., Song, Q., Zhu, Y., Choi, I.-Y., Nelson, R.L., Costa, J.M., Specht, J.E., Shoemaker, R.C., Cregan, P.B., 2006. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. U. S. A 103, 16666-16671.
    Jeong, N., Suh, S.J., Kim, M.-H., Lee, S., Moon, J.-K., Kim, H.S., Jeong, S.-C., 2012. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell 24, 4807-4818.
    Ji, W., Zhu, Y., Li, Y., Yang, L., Zhao, X., Cai, H., Bai, X., 2010. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol. Lett. 32, 1173-1179.
    Jia, K.-H., Zhang, X., Li, L.-L., Shi, T.-L., Liu, D., Yang, Y., Cong, Y., Li, R., Pu, Y., Gong, Y., et al., 2024. Telomere-to-telomere genome assemblies of cultivated and wild soybean provide insights into evolution and domestication under structural variation. Plant Commun. 5, 100919.
    Joshi, T., Valliyodan, B., Wu, J.-H., Lee, S.-H., Xu, D., Nguyen, H.T., 2013. Genomic differences between cultivated soybean, G. max and its wild relative G. soja. BMC Genom. 14, 1-11.
    Kim, M.-S., Lozano, R., Kim, J.H., Bae, D.N., Kim, S.-T., Park, J.-H., Choi, M.S., Kim, J., Ok, H.-C., Park, S.-K., et al., 2021. The patterns of deleterious mutations during the domestication of soybean. Nat. Commun. 12, 97.
    Kim, M.Y., Lee, S., Van, K., Kim, T.-H., Jeong, S.-C., Choi, I.-Y., Kim, D.-S., Lee, Y.-S., Park, D., Ma, J., et al., 2010. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc. Natl. Acad. Sci. U. S. A 107, 22032-22037.
    Kim, M.Y., Van, K., Kang, Y.J., Kim, K.H., Lee, S.-H., 2012. Tracing soybean domestication history: from nucleotide to genome. Breed. Sci. 61, 445-452.
    King, C.A., Purcell, L.C., Brye, K.R., 2009. Differential wilting among soybean genotypes in response to water deficit. Crop Sci. 49, 290-298.
    Koshika, N., Shioya, N., Fujimura, T., Oguchi, R., Ota, C., Kato, E., Takahashi, R., Kimura, S., Furuno, S., Saito, K., et al., 2022. Development of ethyl methanesulfonate mutant edamame soybean (Glycine max (L.) Merr.) populations and forward and reverse genetic screening for early-flowering mutants. Plants 11, 1839.
    Kunert, K., Vorster, B.J., 2020. In search for drought-tolerant soybean: is the slow-wilting phenotype more than just a curiosity? J. Exp. Bot. 71, 457-460.
    Lam, H.-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.-L., Li, M.-W., He, W., Qin, N., Wang, B., et al., 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42, 1053-1059.
    Leamy, L.J., Zhang, H., Li, C., Chen, C.Y., Song, B.-H., 2017. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genom. 18, 1-15.
    Lee, Y.G., Jeong, N., Kim, J.H., Lee, K., Kim, K.H., Pirani, A., Ha, B.K., Kang, S.T., Park, B.S., Moon, J.K., et al., 2015. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J. 81, 625-636.
    Li, Y., Guan, R., Liu, Z., Ma, Y., Wang, L., Li, L., Lin, F., Luan, W., Chen, P., Yan, Z., et al., 2008. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor. Appl. Genet. 117, 857-871.
    Li, Y.-h., Zhou, G., Ma, J., Jiang, W., Jin, L.-g., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., et al., 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045-1052.
    Li, X., Wang, Y., Liu, F., Pi, B., Zhao, T., Yu, B., 2020. Transcriptomic analysis of Glycine soja and G. max seedlings and functional characterization of GsGSTU24 and GsGSTU42 genes under submergence stress. Environ. Exp. Bot. 171, 103963.
    Li, J., Zhang, Y., Ma, R., Huang, W., Hou, J., Fang, C., Wang, L., Yuan, Z., Sun, Q., Dong, X., et al., 2022a. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnol. J. 20, 1110-1121.
    Li, Y.F., Li, Y.H., Su, S.S., Reif, J.C., Qi, Z.M., Wang, X.B., Wang, X., Tian, Y., Li, D.L., Sun, R.J., et al., 2022b. SoySNP618K array: a high-resolution single nucleotide polymorphism platform as a valuable genomic resource for soybean genetics and breeding. J. Integr. Plant Biol. 64, 632-648.
    Li, Y.-H., Qin, C., Wang, L., Jiao, C., Hong, H., Tian, Y., Li, Y., Xing, G., Wang, J., Gu, Y., et al., 2023. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci. China Life Sci. 66, 350-365.
    Li, Z., Sun, L., Xu, X., Liu, Y., He, H., Deng, X.W., 2024. Light control of three-dimensional chromatin organization in soybean. Plant Biotechnol. J. 22, 2596-2611.
    Lin, J.-Y., Le, B.H., Chen, M., Henry, K.F., Hur, J., Hsieh, T.-F., Chen, P.-Y., Pelletier, J.M., Pellegrini, M., Fischer, R.L., et al., 2017. Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. Proc. Natl. Acad. Sci. U. S. A 114, 9730-9739.
    Liu, H., Song, J., Dong, L., Wang, D., Zhang, S., Liu, J., 2017. Physiological responses of three soybean species (Glycine soja, G. gracilis, and G. max cv. Melrose) to salinity stress. J. Plant Res. 130, 723-733.
    Liu, Z., Li, H., Wen, Z., Fan, X., Li, Y., Guan, R., Guo, Y., Wang, S., Wang, D., Qiu, L., 2017b. Comparison of genetic diversity between Chinese and American soybean (Glycine max (L.)) accessions revealed by high-density SNPs. Front. Plant Sci. 8, 2014.
    Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., et al., 2020. Pan-genome of wild and cultivated soybeans. Cell 182, 162-176.
    Liu, Y., Liu, S., Zhang, Z., Ni, L., Chen, X., Ge, Y., Zhou, G., Tian, Z., 2022. GenoBaits Soy40K: a highly flexible and low-cost SNP array for soybean studies. Sci. China Life Sci. 65, 1898-1901.
    Liu, Z., Kong, X., Long, Y., Liu, S., Zhang, H., Jia, J., Cui, W., Zhang, Z., Song, X., Qiu, L., et al., 2023. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat. Plants 9, 515-524.
    Lu, S., Dong, L., Fang, C., Liu, S., Kong, L., Cheng, Q., Chen, L., Su, T., Nan, H., Zhang, D., et al., 2020. Stepwise selection on homoeologous PRR genes controlling flowering and maturity during soybean domestication. Nat. Genet. 52, 428-436.
    Lyu, X., Li, Y.-h., Li, Y., Li, D., Han, C., Hong, H., Tian, Y., Han, L., Liu, B., Qiu, L.-j., 2023. The domestication-associated L1 gene encodes a eucomic acid synthase pleiotropically modulating pod pigmentation and shattering in soybean. Mol. Plant 16, 1178-1191.
    Ma, J., Cannon, S., Jackson, S.A., Shoemaker, R.C., 2010. Soybean comparative genomics, in: Bilyeu, K., Ratnaparkhe, M.B., Kole, C. (Eds.), Genetics, Genomics, and Breeding of Soybean. Science Publishers, p. 245.
    Ma, C., Xin, M., Feldmann, K.A., Wang, X., 2014. Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis. Plant Cell 26, 520-537.
    Machado, F.B., Moharana, K.C., Almeida-Silva, F., Gazara, R.K., Pedrosa-Silva, F., Coelho, F.S., Grativol, C., Venancio, T.M., 2020. Systematic analysis of 1298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas. Plant J. 103, 1894-1909.
    Marand, A.P., Eveland, A.L., Kaufmann, K., Springer, N.M., 2023. cis-Regulatory elements in plant development, adaptation, and evolution. Annu. Rev. Plant Biol. 74, 111-137.
    Mathieu, M., Winters, E.K., Kong, F., Wan, J., Wang, S., Eckert, H., Luth, D., Paz, M., Donovan, C., Zhang, Z., et al., 2009. Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository. Planta 229, 279-289.
    Nawaz, M.A., Yang, S.H., Chung, G., 2018. Wild soybeans: an opportunistic resource for soybean improvement, in: Grillo, O. (Ed.) Rediscovery of Landraces as a Resource for the Future. IntechOpen.
    Ni, L., Liu, Y., Ma, X., Liu, T., Yang, X., Wang, Z., Liang, Q., Liu, S., Zhang, M., Wang, Z., et al., 2023. Pan-3D genome analysis reveals structural and functional differentiation of soybean genomes. Genome Biol. 24, 12.
    Ning, W., Zhai, H., Yu, J., Liang, S., Yang, X., Xing, X., Huo, J., Pang, T., Yang, Y., Bai, X., 2017. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Mol. Breed. 37, 1-10.
    Nisa, Z.-u., Mallano, A.I., Yu, Y., Chen, C., Duan, X., Amanullah, S., Kousar, A., Baloch, A.W., Sun, X., Tabys, D., et al., 2017. GsSNAP33, a novel Glycine soja SNAP25-type protein gene: improvement of plant salt and drought tolerances in transgenic Arabidopsis thaliana. Plant Physiol. Biochem. 119, 9-20.
    Niu, Y., Yung, W.-S., Sze, C.-C., Wong, F.-L., Li, M.-W., Chung, G., Lam, H.-M., 2024. Developing an SNP dataset for efficiently evaluating soybean germplasm resources using the genome sequencing data of 3,661 soybean accessions. BMC Genom. 25, 475.
    Oki, N., Kaga, A., Shimizu, T., Takahashi, M., Kono, Y., Takahashi, M., 2017. QTL mapping of antixenosis resistance to common cutworm (Spodoptera litura Fabricius) in wild soybean (Glycine soja). PLoS One 12, e0189440.
    Pi, B., Liu, X., Huang, Q., Zhang, T., Yu, B., 2023. Comparative transcriptomic analysis of Glycine soja and G. max and functional identification of GsCNGC20-d interacted with GsCDPK29 under salt stress. Environ. Exp. Bot. 206, 105185.
    Pombo, A., Dillon, N., 2015. Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245-257.
    Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., et al., 2010. Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183.
    Seversike, T.M., Sermons, S.M., Sinclair, T.R., Carter, T.E., Rufty, T.W., 2014. Physiological properties of a drought-resistant wild soybean genotype: transpiration control with soil drying and expression of root morphology. Plant Soil 374, 359-370.
    Shaw, R., Tian, X., Xu, J., 2021. Single-cell transcriptome analysis in plants: advances and challenges. Mol. Plant 14, 115-126.
    Shen, x., Wang, y., Zhang, y., Guo, w., Jiao, y., Zhou, x., 2018a. Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis. Int. J. Mol. Sci. 19, 3958.
    Shen, Y., Zhang, J., Liu, Y., Liu, S., Liu, Z., Duan, Z., Wang, Z., Zhu, B., Guo, Y.-L., Tian, Z., 2018b. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 19, 1-14.
    Song, Y., Ji, D., Li, S., Wang, P., Li, Q., Xiang, F., 2012. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7, e41274.
    Song, Q.-X., Lu, X., Li, Q.-T., Chen, H., Hu, X.-Y., Ma, B., Zhang, W.-K., Chen, S.-Y., Zhang, J.-S., 2013a. Genome-wide analysis of DNA methylation in soybean. Mol. Plant 6, 1961-1974.
    Song, Q., Hyten, D.L., Jia, G., Quigley, C.V., Fickus, E.W., Nelson, R.L., Cregan, P.B., 2013b. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8, e54985.
    Song, Q., Hyten, D.L., Jia, G., Quigley, C.V., Fickus, E.W., Nelson, R.L., Cregan, P.B., 2015. Fingerprinting soybean germplasm and its utility in genomic research. G3-Genes. Genom. Genet. 5, 1999-2006.
    Song, S., Wang, J., Zhou, J., Cheng, X., Hu, Y., Wang, J., Zou, J., Zhao, Y., Liu, C., Hu, Z., et al., 2024. Single-cell RNA-sequencing of soybean reveals transcriptional changes and antiviral functions of GmGSTU23 and GmGSTU24 in response to soybean mosaic virus. Plant Cell Environ.
    Song, Q., Yan, L., Quigley, C., Fickus, E., Wei, H., Chen, L., Dong, F., Araya, S., Liu, J., Hyten, D., et al., 2020. Soybean BARCSoySNP6K: an assay for soybean genetics and breeding research. Plant J. 104, 800-811.
    Stepinski, D., 2012. Levels of DNA methylation and histone methylation and acetylation change in root tip cells of soybean seedlings grown at different temperatures. Plant Physiol. Biochem. 61, 9-17.
    Sun, X., Sun, M., Luo, X., Ding, X., Ji, W., Cai, H., Bai, X., Liu, X., Zhu, Y., 2013. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta 237, 1527-1545.
    Sun, L., Miao, Z., Cai, C., Zhang, D., Zhao, M., Wu, Y., Zhang, X., Swarm, S.A., Zhou, L., Zhang, Z.J., et al., 2015. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat. Genet. 47, 939-943.
    Sun, B., Wang, Y., Yang, Q., Gao, H., Niu, H., Li, Y., Ma, Q., Huan, Q., Qian, W., Ren, B., 2023. A high-resolution transcriptomic atlas depicting nitrogen fixation and nodule development in soybean. J. Integr. Plant Biol. 65, 1536-1552.
    Taliercio, E., Gillenwater, J., Woodruff, L., Fallen, B., 2024. Glycine soja, PI424025, is a valuable genetic resource to improve soybean seed-protein content and composition. PLoS One 19, e0310544.
    Tang, L., Cai, H., Zhai, H., Luo, X., Wang, Z., Cui, L., Bai, X., 2014. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue Organ Cult. 118, 77-86.
    Tripodi, P., Nicastro, N., Pane, C., Cammarano, D., 2022. Digital applications and artificial intelligence in agriculture toward next-generation plant phenotyping. Crop Pasture Sci.
    Wang, J., Chu, S., Zhang, H., Zhu, Y., Cheng, H., Yu, D., 2016. Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci. Rep. 6, 20728.
    Wang, M., Li, W., Fang, C., Xu, F., Liu, Y., Wang, Z., Yang, R., Zhang, M., Liu, S., Lu, S., et al., 2018a. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 50, 1435-1441.
    Wang, Y., Li, Y., Wu, H., Hu, B., Zheng, J., Zhai, H., Lv, S., Liu, X., Chen, X., Qiu, H., et al., 2018b. Genotyping of soybean cultivars with medium-density array reveals the population structure and QTNs underlying maturity and seed traits. Front. Plant Sci. 9, 610.
    Wang, S., Liu, S., Wang, J., Yokosho, K., Zhou, B., Yu, Y.-C., Liu, Z., Frommer, W.B., Ma, J.F., Chen, L.-Q., et al., 2020. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl. Sci. Rev. 7, 1776-1786.
    Wang, L., Jia, G., Jiang, X., Cao, S., Chen, Z.J., Song, Q., 2021. Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. Plant Cell 33, 1430-1446.
    Wang, L., Zhang, M., Li, M., Jiang, X., Jiao, W., Song, Q., 2023. A telomere-to-telomere gap-free assembly of soybean genome. Mol. Plant 16, 1711-1714.
    Wang, Q., Zhang, W., Xu, W., Zhang, H., Liu, X., Chen, X., Chen, H., 2024. Genome-wide association study and identification of candidate genes associated with seed number per pod in soybean. Int. J. Mol. Sci. 25, 2536.
    Wilson, R.F., 2008. Soybean: market driven research needs, in: Stacey, G. (Ed.) Genetics and Genomics of Soybean. Springer, pp. 3-15.
    Wu, C., Luo, J., Xiao, Y., 2024. Multi-omics assists genomic prediction of maize yield with machine learning approaches. Mol. Breed. 44, 14.
    Xie, M., Chung, C.Y.-L., Li, M.-W., Wong, F.-L., Wang, X., Liu, A., Wang, Z., Leung, A.K.-Y., Wong, T.-H., Tong, S.-W., et al., 2019. A reference-grade wild soybean genome. Nat. Commun. 10, 1216.
    Yang, L., Wu, K., Gao, P., Liu, X., Li, G., Wu, Z., 2014. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance. Plant Sci. 215, 19-28.
    Yu, Y., Duan, X., Ding, X., Chen, C., Zhu, D., Yin, K., Cao, L., Song, X., Zhu, P., Li, Q., et al., 2017. A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. Plant Mol. Biol. 94, 509-530.
    Yuan, X., Jiang, X., Zhang, M., Wang, L., Jiao, W., Chen, H., Mao, J., Ye, W., Song, Q., 2024. Integrative omics analysis elucidates the genetic basis underlying seed weight and oil content in soybean. Plant Cell 36, 2160-2175.
    Yung, W.S., Wang, Q., Chan, L.Y., Wang, Z., Huang, M., Li, M.W., Wong, F.L., Lam, H.M., 2024. DNA hypomethylation is one of the epigenetic mechanisms involved in salt-stress priming in soybean seedlings. Plant Cell Environ.
    Yung, W.S., Wang, Q., Huang, M., Wong, F.L., Liu, A., Ng, M.S., Li, K.P., Sze, C.C., Li, M.W., Lam, H.M., 2022. Priming-induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress. Plant J. 109, 1575-1590.
    Zeb, A., 2021. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res. Int. 143, 110312.
    Zhang, H.Y., Song, Q.J., Griffin, J.D., Song, B.H., 2017. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines). Mol. Genet. Genom. 292, 1257-1265.
    Zhang, M., Zhang, X., Jiang, X., Qiu, L., Jia, G., Wang, L., Ye, W., Song, Q., 2022. iSoybean: a database for the mutational fingerprints of soybean. Plant Biotechnol. J. 20, 1435.
    Zhang, C., Xie, L., Yu, H., Wang, J., Chen, Q., Wang, H., 2023. The T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. Mol. Plant 16, 1715-1718.
    Zhang, X., Luo, Z., Marand, A.P., Yan, H., Jang, H., Bang, S., Mendieta, J.P., Minow, M.A., Schmitz, R.J., 2024. A spatially resolved multi-omic single-cell atlas of soybean development. Cell 188, 550-567.
    Zhao, B., Zhang, S., Yang, W., Li, B., Lan, C., Zhang, J., Yuan, L., Wang, Y., Xie, Q., Han, J., et al., 2021. Multi-omic dissection of the drought resistance traits of soybean landrace LX. Plant Cell Environ. 44, 1379-1398.
    Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., Yu, Y., Shu, L., Zhao, Y., Ma, Y., et al., 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408-414.
    Zhu, W., Yang, C., Yong, B., Wang, Y., Li, B., Gu, Y., Wei, S., An, Z., Sun, W., Qiu, L., et al., 2022. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. New Phytol. 236, 1375-1392.
    Zhuang, Y., Li, X., Hu, J., Xu, R., Zhang, D., 2022. Expanding the gene pool for soybean improvement with its wild relatives. aBIOTECH 3, 115-125.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (60) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return