9.9
CiteScore
7.1
Impact Factor
Volume 51 Issue 3
Mar.  2024
Turn off MathJax
Article Contents

The genome-wide meiotic recombination landscape in ciliates and its implications for crossover regulation and genome evolution

doi: 10.1016/j.jgg.2023.09.013
Funds:

We would like to thank Xiaocui Chai at The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences for her help with genome sequencing experiments. We also thank the members of Protist 10,000 Genomes Project (P10K) consortium for their helpful suggestions. The bioinformatics analysis was supported by the Wuhan Branch, Supercomputing Center, Chinese Academy of Sciences, China. The culture and storage of cell strains was supported by the National Aquatic Biological Resource Center (NABRC). This work was supported by the Bureau of Frontier Sciences and Education, Chinese Academy of Sciences (ZDBS-LY-SM026), the National Natural Science Foundation of China (32370457, 32122015, 32130011, 31900316, and 31900339), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0480000), PJA3 grant of ARC Foundation (ARCPJA2021060003830) and Equipes 2022 grant of Foundation Recherche Médicale (EQU202203014651).

  • Received Date: 2023-08-12
  • Accepted Date: 2023-09-27
  • Rev Recd Date: 2023-09-26
  • Publish Date: 2023-10-04
  • Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa. However, genome-wide recombination landscape has not been reported in ciliates and it remains unknown how it is affected by the unique features of ciliates: the synaptonemal complex (SC)-independent meiosis and the nuclear dimorphism. Here, we show the recombination landscape in the model ciliate Tetrahymena thermophila by analyzing single-nucleotide polymorphism datasets from 38 hybrid progeny. We detect 1021 crossover (CO) events (35.8 per meiosis), corresponding to an overall CO rate of 9.9 cM/Mb. However, gene conversion by non-crossover is rare (1.03 per meiosis) and not biased towards G or C alleles. Consistent with the reported roles of SC in CO interference, we find no obvious sign of CO interference. CO tends to occur within germ-soma common genomic regions and many of the 44 identified CO hotspots localize at the centromeric or subtelomeric regions. Gene ontology analyses show that CO hotspots are strongly associated with genes responding to environmental changes. We discuss these results with respect to how nuclear dimorphism has potentially driven the formation of the observed recombination landscape to facilitate environmental adaptation and the sharing of machinery among meiotic and somatic recombination.
  • loading
  • Allen, S.L., 1963. Genomic exclusion in Tetrahymena: genetic basis. J. Protozool. 10, 413-420.
    Billings, T., Sargent, E.E., Szatkiewicz, J.P., Leahy, N., Kwak, I.Y., Bektassova, N., Walker, M., Hassold, T., Graber, J.H., Broman, K.W., 2010. Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping. PLoS ONE 5, e15340.
    Bolivar, P., Mugal, C.F., Rossi, M., Nater, A., Wang, M., Dutoit, L., Ellegren, H., 2018. Biased inference of selection due to GC-biased gene conversion and the rate of protein evolution in flycatchers when accounting for it. Mol. Biol. Evol. 35, 2475-2486.
    Brazier, T., Glemin, S., 2022. Diversity and determinants of recombination landscapes in flowering plants. PLoS Genet. 18, e1010141.
    Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R.D., Petukhova, G.V., 2012. Genetic recombination is directed away from functional genomic elements in mice. Nature 485, 642-645.
    Brion, C., Legrand, S., Peter, J., Caradec, C., Pflieger, D., Hou, J., Friedrich, A., Llorente, B., Schacherer, J., 2017. Variation of the meiotic recombination landscape and properties over a broad evolutionary distance in yeasts. PLoS Genet. 13, e1006917.
    Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194-1202.
    Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890.
    Chi, J., Mahe, F., Loidl, J., Logsdon, J., Dunthorn, M., 2014. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660-672.
    Choi, K., Zhao, X., Kelly, K.A., Venn, O., Higgins, J.D., Yelina, N.E., Hardcastle, T.J., Ziolkowski, P.A., Copenhaver, G.P., Franklin, F.C.H., 2013. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat. Genet. 45, 1327-1336.
    Comeron, J.M., Ratnappan, R., Bailin, S., 2012. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet. 8, e1002905.
    Croll, D., Lendenmann, M.H., Stewart, E., McDonald, B.A., 2015. The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics 201, 1213-1228.
    Doerder, F.P., 2014. Abandoning sex: multiple origins of asexuality in the ciliate Tetrahymena. BMC Ecol. Evol. 14, 1-13.
    Dutta, R., Saha-Mandal, A., Cheng, X., Qiu, S., Serpen, J., Fedorova, L., Fedorov, A., 2018. 1000 human genomes carry widespread signatures of GC biased gene conversion. BMC Genomics 19, 1-9.
    Eisen, J.A., Coyne, R.S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J.R., Badger, J.H., Ren, Q., Amedeo, P., Jones, K.M., et al., 2006. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4, e286.
    Feng, Y., Landweber, L.F., 2021. Transposon debris in ciliate genomes. PLoS Biol. 19, e3001354.
    Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Correard, S., Gheorghe, M., Baranasic, D., et al., 2020. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87-D92.
    Gong, W., Song, X., Xie, C., Zhou, Y., Zhu, Z., Xu, C., Peng, Y., 2021. Landscape of meiotic crossovers in Hericium erinaceus. Microbiol. Res. 245, 126692.
    Gorovsky, M.A., Yao, M.C., Keevert, J.B., Pleger, G.L., 1975. Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. 9, 311-327.
    Hamilton, E.P., Kapusta, A., Huvos, P.E., Bidwell, S.L., Zafar, N., Tang, H., Hadjithomas, M., Krishnakumar, V., Badger, J.H., Caler, E.V., et al., 2016. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. Elife 5, e19090.
    Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., Glass, C.K., 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589.
    Henningsen, A., Toomet, O., 2011. maxLik: A package for maximum likelihood estimation in R. Comput. Stat. 26, 443-458.
    Jia, X., Zhang, Y., Zhang, Q., Zhao, Q., Traw, M.B., Wang, L., Tian, D., Wang, C., Yang, S., 2019. High-resolution insight into recombination events at the SD1 locus in rice. Plant J. 97, 683-692.
    Jiang, H., Li, N., Gopalan, V., Zilversmit, M.M., Varma, S., Nagarajan, V., Li, J., Mu, J., Hayton, K., Henschen, B., 2011. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol. 12, 1-15.
    Jiang, C., Wang, G., Zhang, J., Gu, S., Wang, X., Qin, W., Chen, K., Yuan, D., Chai, X., Yang, M., et al., 2023. iGDP: An integrated genome decontamination pipeline for wild ciliated microeukaryotes. Mol. Ecol. Resour. 23, 1182-1193.
    Kent, T.V., Uzunovic, J., Wright, S.I., 2017. Coevolution between transposable elements and recombination. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160458.
    Kosambi, D.D., 1943. The estimation of map distance from recombination values. Ann. Eugen. 12, 172-175. https://doi.org/110.1111/j.1469-1809.1943.tb02321.x.
    Lambing, C., Franklin, F.C.H., Wang, C.J.R., 2017. Understanding and manipulating meiotic recombination in plants. Plant Physiol. 173, 1530-1542.
    Lee, C., Leem, J., Oh, J.S., 2023. Selective utilization of non-homologous end-joining and homologous recombination for DNA repair during meiotic maturation in mouse oocytes. Cell Prolif. 56, e13384.
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 2009. Genome Project Data Processing Subgroup,The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
    Li, R., Bitoun, E., Altemose, N., Davies, R.W., Davies, B., Myers, S.R., 2019. A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination. Nat. Commun. 10, 3900.
    Li, W., Freudenberg, J., 2009. Two-parameter characterization of chromosome-scale recombination rate. Genome Res. 19, 2300-2307.
    Li, X., Li, L., Yan, J., 2015. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize. Nat. Commun. 6, 1-9.
    Lian, Q., Maestroni, L., Gaudin, M., Llorente, B., Mercier, R., 2022. Remarkably high rate of meiotic recombination in the fission yeast Schizosaccharomyces pombe. bioRxiv. https://doi.org/10.1101/2022.12.12.520044.
    Libuda, D.E., Uzawa, S., Meyer, B.J., Villeneuve, A.M., 2013. Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature 502, 703-706.
    Liu, H., Huang, J., Sun, X., Li, J., Hu, Y., Yu, L., Liti, G., Tian, D., Hurst, L.D., Yang, S., 2018. Tetrad analysis in plants and fungi finds large differences in gene conversion rates but no GC bias. Nat. Ecol. Evol. 2, 164-173.
    Liu, H., Zhang, X., Huang, J., Chen, J., Tian, D., Hurst, L.D., Yang, S., 2015. Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee. Genome Biol. 16, 1-20.
    Liu, Y., Gaines, W.A., Callender, T., Busygina, V., Oke, A., Sung, P., Fung, J.C., Hollingsworth, N.M., 2014. Down-regulation of Rad51 activity during meiosis in yeast prevents competition with Dmc1 for repair of double-strand breaks. PLoS Genet. 10, e1004005.
    Loidl, J., Lorenz, A., 2016. DNA double-strand break formation and repair in Tetrahymena meiosis. Semin Cell Dev Biol. 54, 126-134.
    Lu, P., Han, X., Qi, J., Yang, J., Wijeratne, A.J., Li, T., Ma, H., 2012. Analysis of Arabidopsis genome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg erecta and all four products of a single meiosis. Genome Res. 22, 508-518.
    Luo, C., Li, X., Zhang, Q., Yan, J., 2019. Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nat. Commun. 10, 785.
    Mancera, E., Bourgon, R., Brozzi, A., Huber, W., Steinmetz, L.M., 2008. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479-485.
    Marsolier-Kergoat, M.C., Khan, M.M., Schott, J., Zhu, X., Llorente, B., 2018. Mechanistic view and genetic control of DNA recombination during meiosis. Mol. Cell 70, 9-20 e26.
    Matise, T.C., Chen, F., Chen, W., Francisco, M., Hansen, M., He, C., Hyland, F.C., Kennedy, G.C., Kong, X., Murray, S.S., 2007. A second-generation combined linkage-physical map of the human genome. Genome Res. 17, 1783-1786.
    Melamed-Bessudo, C., Shilo, S., Levy, A.A., 2016. Meiotic recombination and genome evolution in plants. Curr. Opin. Plant Biol. 30, 82-87.
    Morgan, A.P., Gatti, D.M., Najarian, M.L., Keane, T.M., Galante, R.J., Pack, A.I., Mott, R., Churchill, G.A., de Villena, F.P.M., 2017. Structural variation shapes the landscape of recombination in mouse. Genetics 206, 603-619.
    Morgan, C., Fozard, J.A., Hartley, M., Henderson, I.R., Bomblies, K., Howard, M., 2021. Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis. Nat. Commun. 12, 4674.
    Mukiza, T.O., Protacio, R.U., Davidson, M.K., Steiner, W.W., Wahls, W.P., 2019. Diverse DNA sequence motifs activate meiotic recombination hotspots through a common chromatin remodeling pathway. Genetics 213, 789-803.
    Myers, S., Bottolo, L., Freeman, C., McVean, G., Donnelly, P., 2005. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321-324.
    Orias, E., Cervantes, M.D., Hamilton, E.P., 2011. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Res. Microbiol. 162, 578-586.
    Otto, S.P., Payseur, B.A., 2019. Crossover interference: shedding light on the evolution of recombination. Annu. Rev. Genet. 53, 19-44.
    Ottolini, C.S., Newnham, L.J., Capalbo, A., Natesan, S.A., Joshi, H.A., Cimadomo, D., Griffin, D.K., Sage, K., Summers, M.C., Thornhill, A.R., 2015. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727-735.
    Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., Neale, M.J., Jasin, M., Socci, N.D., 2011. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719-731.
    Ruehle, M.D., Orias, E., Pearson, C.G., 2016. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics 203, 649-665.
    Shifman, S., Bell, J.T., Copley, R.R., Taylor, M.S., Williams, R.W., Mott, R., Flint, J., 2006. A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol. 4, e395.
    Shodhan, A., Kataoka, K., Mochizuki, K., Novatchkova, M., Loidl, J., 2017. A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena. Mol. Biol. Cell 28, 825-833.
    Shodhan, A., Lukaszewicz, A., Novatchkova, M., Loidl, J., 2014. Msh4 and Msh5 function in SC-independent chiasma formation during the streamlined meiosis of Tetrahymena. Genetics 198, 983-993.
    Si, W., Yuan, Y., Huang, J., Zhang, X., Zhang, Y., Zhang, Y., Tian, D., Wang, C., Yang, Y., Yang, S., 2015. Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2 plants. New Phytol. 206, 1491-1502.
    Sishc, B.J., Davis, A.J., 2017. The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancers 9, 81.
    Smagulova, F., Gregoretti, I.V., Brick, K., Khil, P., Camerini-Otero, R.D., Petukhova, G.V., 2011. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 472, 375-378.
    Smeds, L., Mugal, C.F., Qvarnstrom, A., Ellegren, H., 2016. High-resolution mapping of crossover and non-crossover recombination events by whole-genome re-sequencing of an avian pedigree. PLoS Genet. 12, e1006044.
    Stapley, J., Feulner, P.G., Johnston, S.E., Santure, A.W., Smadja, C.M., 2017. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160455.
    Stukenbrock, E.H., Bataillon, T., Dutheil, J.Y., Hansen, T.T., Li, R., Zala, M., McDonald, B.A., Wang, J., Schierup, M.H., 2011. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res. 21, 2157-2166.
    Szurman-Zubrzycka, M., Baran, B., Stolarek-Januszkiewicz, M., Kwasniewska, J., Szarejko, I., Gruszka, D., 2019. The dmc1 mutant allows an insight into the DNA double-strand break repair during meiosis in barley (Hordeum vulgare L.). Front Plant Sci. 10, 761.
    Tian, M., Cai, X., Liu, Y., Liucong, M., Howard-Till, R., 2022. A practical reference for studying meiosis in the model ciliate Tetrahymena thermophila. Mar. Life Sci. Technol. 4, 595-608.
    Tiley, G.P., Burleigh, J.G., 2015. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol. Biol. 15, 194. https://doi.org/10.1186/s12862-015-0473-3.
    Wang, G., Chen, K., Zhang, J., Deng, S., Xiong, J., He, X., Fu, Y., Miao, W., 2020. Drivers of mating type composition in Tetrahymena thermophila. Genome Biol. Evol. 12, 2328-2343.
    Wang, G., Fu, L., Xiong, J., Mochizuki, K., Fu, Y., Miao, W., 2021a. Identification and characterization of base-substitution mutations in the macronuclear genome of the ciliate Tetrahymena thermophila. Genome Biol. Evol. 13, evaa232.
    Wang, G., Wang, S., Chai, X., Zhang, J., Yang, W., Jiang, C., Chen, K., Miao, W., Xiong, J., 2021b. A strategy for complete telomere-to-telomere assembly of ciliate macronuclear genome using ultra-high coverage Nanopore data. Comput. Struct. Biotechnol. J. 19, 1928-1932.
    Xiong, J., Yang, W., Chen, K., Jiang, C., Ma, Y., Chai, X., Yan, G., Wang, G., Yuan, D., Liu, Y., 2019. Hidden genomic evolution in a morphospecies-the landscape of rapidly evolving genes in Tetrahymena. PLoS Biol. 17, e3000294.
    Yang, S., Yuan, Y., Wang, L., Li, J., Wang, W., Liu, H., Chen, J.Q., Hurst, L.D., Tian, D., 2012. Great majority of recombination events in Arabidopsis are gene conversion events. Proc. Natl. Acad. Sci. U.S.A. 109, 20992-20997.
    Zhang, F.G., Zhang, R.R., Gao, J.M., 2021. The organization, regulation, and biological functions of the synaptonemal complex. Asian J Androl. 23, 580-589.
    Zhao, X., Xiong, J., Mao, F., Sheng, Y., Chen, X., Feng, L., Dui, W., Yang, W., Kapusta, A., Feschotte, C., 2019. RNAi-dependent polycomb repression controls transposable elements in Tetrahymena. Genes Dev. 33, 348-364.
    Zhou, Y., Fu, L., Mochizuki, K., Xiong, J., Miao, W., Wang, G., 2022. Absolute quantification of chromosome copy numbers in the polyploid macronucleus of Tetrahymena thermophila at the single-cell level. J. Eukaryot. Microbiol. 69, e12907.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (687) PDF downloads (34) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return