9.9
CiteScore
7.1
Impact Factor
Volume 50 Issue 10
Oct.  2023
Turn off MathJax
Article Contents

Key regulators of intestinal stem cells: diet, microbiota, and microbial metabolites

doi: 10.1016/j.jgg.2022.12.002
Funds:

This work was supported by the National Natural Science Foundation of China (81973837), Scientific and technological innovation project of China Academy of Chinese Medical Sciences (CI2021A016), and National Key projects for international cooperation on science, technology and innovation (2021YFE0201100).

  • Received Date: 2022-10-11
  • Accepted Date: 2022-12-19
  • Rev Recd Date: 2022-12-08
  • Publish Date: 2022-12-23
  • Interactions between diet and the intestinal microbiome play an important role in human health and disease development. It is well known that such interactions, whether direct or indirect, trigger a series of metabolic reactions in the body. Evidence suggests that intestinal stem cells (ISCs), which are phenotypic precursors of various intestinal epithelial cells, play a significant role in the regulation of intestinal barrier function and homeostasis. The advent and evolution of intestinal organoid culture techniques have presented a key opportunity to study the association between the intestinal microenvironment and ISCs. As a result, the effects exerted by dietary factors, intestinal microbiomes, and their metabolites on the metabolic regulation of ISCs and the potential mechanisms underlying such effects are being gradually revealed. This review summarises the effects of different dietary patterns on the behaviour and functioning of ISCs and focuses on the crosstalk between intestinal microbiota, related metabolites, and ISCs, with the aim of fully understanding the relationship between these three factors and providing further insights into the complex mechanisms associated with ISCs in the human body. Gaining an understanding of these mechanisms may lead to the development of novel dietary interventions or drugs conducive to intestinal health.
  • loading
  • Abbasi, J., 2018. Interest in the ketogenic diet grows for weight loss and type 2 diabetes. Jama 319, 215-217.
    Ahmed Nasef, N., Mehta, S.,Ferguson, L.R., 2014. Dietary interactions with the bacterial sensing machinery in the intestine: The plant polyphenol case. Front Genet. 5, 64.
    Alonso, S.,Yilmaz O, H., 2018. Nutritional regulation of intestinal stem cells. Annu Rev Nutr. 38, 273-301.
    Ang, Q.Y., Alexander, M., Newman, J.C., Tian, Y., Cai, J., Upadhyay, V., Turnbaugh, J.A., Verdin, E., Hall, K.D., Leibel, R.L., et al., 2020. Ketogenic diets alter the gut microbiome resulting in decreased intestinal th17 cells. Cell 181, 1263-1275.
    Appunni, S., Rubens, M., Ramamoorthy, V., Tonse, R., Saxena, A., McGranaghan, P., Kaiser, A.,Kotecha, R., 2021. Emerging evidence on the effects of dietary factors on the gut microbiome in colorectal cancer. Front Nutr. 8, 718389.
    Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al., 2007. Identification of stem cells in small intestine and colon by marker gene lgr5. Nature 449, 1003-1007.
    Bennedsen, A.L.B., Furbo, S., Bjarnsholt, T., Raskov, H., Gogenur, I.,Kvich, L., 2022. The gut microbiota can orchestrate the signaling pathways in colorectal cancer. Apmis.130, 121-139.
    Beumer, J.,Clevers, H., 2016. Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 143, 3639-3649.
    Beyaz, S., Chung, C., Mou, H., Bauer-Rowe, K.E., Xifaras, M.E., Ergin, I., Dohnalova, L., Biton, M., Shekhar, K., Eskiocak, O., et al., 2021a. Dietary suppression of mhc class ii expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell 28, 1922-1935.
    Beyaz, S., Mana, M.D., Roper, J., Kedrin, D., Saadatpour, A., Hong, S.J., Bauer-Rowe, K.E., Xifaras, M.E., Akkad, A., Arias, E., et al., 2016. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53-58.
    Beyaz, S., Mana, M.D.,Yilmaz, O.H., 2021b. High-fat diet activates a PPAR-δ program to enhance intestinal stem cell function. Cell Stem Cell 28, 598-599.
    Burgueno, J.F.,Abreu, M.T., 2020. Epithelial toll-like receptors and their role in gut homeostasis and disease. Nat. Rev. Gastroenterol Hepatol.17, 263-278.
    Cai, J., Sun, L.,Gonzalez, F.J., 2022. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 30, 289-300.
    Carter, S., Clifton, P.M.,Keogh, J.B., 2018. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: A randomized noninferiority trial. JAMA Netw. Open 1, e180756.
    Carvalho, F.A., Aitken, J.D., Vijay-Kumar, M.,Gewirtz, A.T., 2012. Toll-like receptor-gut microbiota interactions: Perturb at your own risk! Annu. Rev. Physiol.74, 177-198.
    Chambers, E.S., Viardot, A., Psichas, A., Morrison, D.J., Murphy, K.G., Zac-Varghese, S.E., MacDougall, K., Preston, T., Tedford, C., Finlayson, G.S., et al., 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744-1754.
    Chen, L., Vasoya, R.P., Toke, N.H., Parthasarathy, A., Luo, S., Chiles, E., Flores, J., Gao, N., Bonder, E.M., Su, X., et al., 2020. Hnf4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology 158, 985-999.
    Cheng, C.W., Biton, M., Haber, A.L., Gunduz, N., Eng, G., Gaynor, L.T., Tripathi, S., Calibasi-Kocal, G., Rickelt, S., Butty, V.L., et al., 2019. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell 178, 1115-1131.
    Christakos, S., 2021. Vitamin d: A critical regulator of intestinal physiology. JBMR Plus 5, e10554.
    Cox, A.J., West, N.P.,Cripps, A.W., 2015. Obesity, inflammation, and the gut microbiota. The Lancet Diabetes & Endocrinology 3, 207-215.
    Dalvi, P.S., Chalmers, J.A., Luo, V., Han, D.Y., Wellhauser, L., Liu, Y., Tran, D.Q., Castel, J., Luquet, S., Wheeler, M.B., et al., 2017. High fat induces acute and chronic inflammation in the hypothalamus: Effect of high-fat diet, palmitate and tnf-alpha on appetite-regulating npy neurons. Int. J. Obes (Lond). 41, 149-158.
    de Cabo, R.,Mattson, M.P., 2019. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541-2551.
    Duan, Y., Zeng, L., Zheng, C., Song, B., Li, F., Kong, X.,Xu, K., 2018. Inflammatory links between high fat diets and diseases. Front Immunol. 9, 2649.
    Fakhoury, H.M.A., Kvietys, P.R., AlKattan, W., Anouti, F.A., Elahi, M.A., Karras, S.N.,Grant, W.B., 2020. Vitamin d and intestinal homeostasis: Barrier, microbiota, and immune modulation. J. Steroid. Biochem. Mol. Biol. 200, 105663.
    Farhana, L., Nangia-Makker, P., Arbit, E., Shango, K., Sarkar, S., Mahmud, H., Hadden, T., Yu, Y.,Majumdar, A.P., 2016. Bile acid: A potential inducer of colon cancer stem cells. Stem Cell Res. Ther. 7, 181.
    Ferrebee, C.B.,Dawson, P.A., 2015. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta. Pharm. Sin. B. 5, 129-134.
    Francescangeli, F., De Angelis, M.L.,Zeuner, A., 2019. Dietary factors in the control of gut homeostasis, intestinal stem cells, and colorectal cancer. Nutrients 11, 2936.
    Fu, T., Coulter, S., Yoshihara, E., Oh, T.G., Fang, S., Cayabyab, F., Zhu, Q., Zhang, T., Leblanc, M., Liu, S., et al., 2019a. Fxr regulates intestinal cancer stem cell proliferation. Cell 176, 1098-1112.
    Fu, X., Liu, Z., Zhu, C., Mou, H.,Kong, Q., 2019b. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit. Rev. Food Sci. Nutr. 59, S130-S152.
    Gehart, H.,Clevers, H., 2019. Tales from the crypt: New insights into intestinal stem cells. Nat. Rev. Gastroenterol Hepatol. 16, 19-34.
    Green, C.L., Lamming, D.W.,Fontana, L., 2022. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 23, 56-73.
    Guezguez, A., Pare, F., Benoit, Y.D., Basora, N.,Beaulieu, J.F., 2014. Modulation of stemness in a human normal intestinal epithelial crypt cell line by activation of the wnt signaling pathway. Exp. Cell Res. 322, 355-364.
    Harris, T.E.,Thorner, M.O., 2012. Caloric restriction in mtorc1 control of intestinal homeostasis. Cell Metab. 16, 6-8.
    He, J., Zhang, P., Shen, L., Niu, L., Tan, Y., Chen, L., Zhao, Y., Bai, L., Hao, X., Li, X., et al., 2020. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci. 21, 6356.
    Hernandez-Saavedra, D., Moody, L., Xu, G.B., Chen, H.,Pan, Y.X., 2019. Epigenetic regulation of metabolism and inflammation by calorie restriction. Adv. Nutr. 10, 520-536.
    Huang, D., Xiong, M., Xu, X., Wu, X., Xu, J., Cai, X., Lu, L.,Zhou, H., 2020. Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage. Biochem. Biophys. Res. Commun. 529, 289-295.
    Ianiro, G., Tilg, H.,Gasbarrini, A., 2016. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut 65, 1906-1915.
    Iatsenko, I., Boquete, J.P.,Lemaitre, B., 2018. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal nadph oxidase nox and shortens drosophila lifespan. Immunity 49, 929-942.e925.
    Igarashi, M.,Guarente, L., 2016. Mtorc1 and sirt1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166, 436-450.
    Inagaki, A., Ichikawa, H.,Sakata, T., 2007. Inhibitory effect of succinic acid on epithelial cell proliferation of colonic mucosa in rats. J Nutr Sci Vitaminol (Tokyo). 53, 377-379.
    Iyer, N.,Corr, S.C., 2021. Gut microbial metabolite-mediated regulation of the intestinal barrier in the pathogenesis of inflammatory bowel disease. Nutrients 13, 4259.
    Jiang, W., Wang, X., Zeng, B., Liu, L., Tardivel, A., Wei, H., Han, J., MacDonald, H.R., Tschopp, J., Tian, Z., et al., 2013. Recognition of gut microbiota by nod2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J. Exp. Med. 210, 2465-2476.
    Jones, J.C., Brindley, C.D., Elder, N.H., Myers, M.G., Jr., Rajala, M.W., Dekaney, C.M., McNamee, E.N., Frey, M.R., Shroyer, N.F.,Dempsey, P.J., 2019. Cellular plasticity of defa4(cre)-expressing paneth cells in response to notch activation and intestinal injury. Cell Mol. Gastroenterol. Hepatol. 7, 533-554.
    Jones, R.M.,Neish, A.S., 2017. Redox signaling mediated by the gut microbiota. Free Radic. Biol. Med. 105, 41-47.
    Kaiko, G.E., Ryu, S.H., Koues, O.I., Collins, P.L., Solnica-Krezel, L., Pearce, E.J., Pearce, E.L., Oltz, E.M.,Stappenbeck, T.S., 2016. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165, 1708-1720.
    Kim, T.Y., Kim, S., Kim, Y., Lee, Y.S., Lee, S., Lee, S.H.,Kweon, M.N., 2022. A high-fat diet activates the bas-fxr axis and triggers cancer-associated fibroblast properties in the colon. Cell Mol. Gastroenterol. Hepatol. 13, 1141-1159.
    Koh, A., De Vadder, F., Kovatcheva-Datchary, P.,Backhed, F., 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165, 1332-1345.
    Kolodziejczyk, A.A., Zheng, D.,Elinav, E., 2019. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742-753.
    Krautkramer, K.A., Fan, J.,Backhed, F., 2021. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77-94.
    Lee, C., Choi, C., Kang, H.S., Shin, S.W., Kim, S.Y., Park, H.C.,Hong, S.N., 2019. Nod2 supports crypt survival and epithelial regeneration after radiation-induced injury. Int. J. Mol. Sci. 20.
    Lee, D., Albenberg, L., Compher, C., Baldassano, R., Piccoli, D., Lewis, J.D.,Wu, G.D., 2015. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 148, 1087-1106.
    Lee, Y.S., Kim, T.Y., Kim, Y., Lee, S.H., Kim, S., Kang, S.W., Yang, J.Y., Baek, I.J., Sung, Y.H., Park, Y.Y., et al., 2018. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe 24, 833-846.e836.
    Levy, A., Stedman, A., Deutsch, E., Donnadieu, F., Virgin, H.W., Sansonetti, P.J.,Nigro, G., 2020. Innate immune receptor nod2 mediates lgr5(+) intestinal stem cell protection against ros cytotoxicity via mitophagy stimulation. Proc. Natl. Acad. Sci. U. S. A. 117, 1994-2003.
    Li, W., Lin, Y., Luo, Y., Wang, Y., Lu, Y., Li, Y.,Guo, H., 2021. Vitamin d receptor protects against radiation-induced intestinal injury in mice via inhibition of intestinal crypt stem/progenitor cell apoptosis. Nutrients 13, 2910.
    Li, W., Peregrina, K., Houston, M.,Augenlicht, L.H., 2020. Vitamin d and the nutritional environment in functions of intestinal stem cells: Implications for tumorigenesis and prevention. J. Steroid Biochem. Mol. Biol. 198, 105556.
    Liang, S.J., Li, X.G.,Wang, X.Q., 2019. Notch signaling in mammalian intestinal stem cells: Determining cell fate and maintaining homeostasis. Curr. Stem Cell Res. Ther. 14, 583-590.
    Liang, S.J., Zhou, J.Y.,Wang, X.Q., 2021. Signaling network centered on mtorc1 dominates mammalian intestinal stem cell ageing. Stem Cell Rev. Rep. 17, 842-849.
    Liu, H., Wang, J., He, T., Becker, S., Zhang, G., Li, D.,Ma, X., 2018. Butyrate: A double-edged sword for health? Adv. Nutr. 9, 21-29.
    Louis, P.,Flint, H.J., 2017. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 19, 29-41.
    Mana, M.D., Hussey, A.M., Tzouanas, C.N., Imada, S., Barrera Millan, Y., Bahceci, D., Saiz, D.R., Webb, A.T., Lewis, C.A., Carmeliet, P., et al., 2021. High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep. 35, 109212.
    Markandey, M., Bajaj, A., Ilott, N.E., Kedia, S., Travis, S., Powrie, F.,Ahuja, V., 2021. Gut microbiota: Sculptors of the intestinal stem cell niche in health and inflammatory bowel disease. Gut Microbes 13, 1990827.
    McCullough, M.L., Zoltick, E.S., Weinstein, S.J., Fedirko, V., Wang, M., Cook, N.R., Eliassen, A.H., Zeleniuch-Jacquotte, A., Agnoli, C., Albanes, D., et al., 2019. Circulating vitamin d and colorectal cancer risk: An international pooling project of 17 cohorts. J. Natl. Cancer Inst. 111, 158-169.
    Melhem, H., Kaya, B., Ayata, C.K., Hruz, P.,Niess, J.H., 2019. Metabolite-sensing g protein-coupled receptors connect the diet-microbiota-metabolites axis to inflammatory bowel disease. Cells 8, 450.
    Mihaylova, M.M., Cheng, C.W., Cao, A.Q., Tripathi, S., Mana, M.D., Bauer-Rowe, K.E., Abu-Remaileh, M., Clavain, L., Erdemir, A., Lewis, C.A., et al., 2018. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22, 769-778.e764.
    Murphy, E.A., Velazquez, K.T.,Herbert, K.M., 2015. Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. Care. 18, 515-520.
    Naito, T., Mulet, C., De Castro, C., Molinaro, A., Saffarian, A., Nigro, G., Berard, M., Clerc, M., Pedersen, A.B., Sansonetti, P.J., et al., 2017. Lipopolysaccharide from crypt-specific core microbiota modulates the colonic epithelial proliferation-to-differentiation balance. mBio 8, e01680-01617.
    Neal, M.D., Sodhi, C.P., Jia, H., Dyer, M., Egan, C.E., Yazji, I., Good, M., Afrazi, A., Marino, R., Slagle, D., et al., 2012. Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J. Biol. Chem. 287, 37296-37308.
    Nigro, G., Rossi, R., Commere, P.H., Jay, P.,Sansonetti, P.J., 2014. The cytosolic bacterial peptidoglycan sensor nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe 15, 792-798.
    Nobs, S.P., Zmora, N.,Elinav, E., 2020. Nutrition regulates innate immunity in health and disease. Annu. Rev. Nutr. 40, 189-219.
    Novak, J.S.S., Baksh, S.C.,Fuchs, E., 2021. Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes Dev. 35, 199-211.
    O'Callaghan, A.A.,Corr, S.C., 2019. Establishing boundaries: The relationship that exists between intestinal epithelial cells and gut-dwelling bacteria. Microorganisms 7, 663.
    O'Keefe, S.J., 2016. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol Hepatol. 13, 691-706.
    Paoli, A., Mancin, L., Bianco, A., Thomas, E., Mota, J.F.,Piccini, F., 2019. Ketogenic diet and microbiota: Friends or enemies? Genes (Basel). 10, 534.
    Park, J.S.,Kim, Y.J., 2020. Anti-aging effect of the ketone metabolite beta-hydroxybutyrate in drosophila intestinal stem cells. Int. J. Mol. Sci. 21, 3497.
    Pedron, T., Mulet, C., Dauga, C., Frangeul, L., Chervaux, C., Grompone, G.,Sansonetti, P.J., 2012. A crypt-specific core microbiota resides in the mouse colon. mBio 3, e00116-00112.
    Peregrina, K., Houston, M., Daroqui, C., Dhima, E., Sellers, R.S.,Augenlicht, L.H., 2015. Vitamin d is a determinant of mouse intestinal lgr5 stem cell functions. Carcinogenesis 36, 25-31.
    Priyadarshini, M., Kotlo, K.U., Dudeja, P.K.,Layden, B.T., 2018. Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr. Physiol. 8, 1091-1115.
    Qiu, P., Ishimoto, T., Fu, L., Zhang, J., Zhang, Z.,Liu, Y., 2022. The gut microbiota in inflammatory bowel disease. Front Cell Infect Microbiol. 12, 733992.
    Rangan, P., Choi, I., Wei, M., Navarrete, G., Guen, E., Brandhorst, S., Enyati, N., Pasia, G., Maesincee, D., Ocon, V., et al., 2019. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 26, 2704-2719.
    Rapozo, D.C., Bernardazzi, C.,de Souza, H.S., 2017. Diet and microbiota in inflammatory bowel disease: The gut in disharmony. World J. Gastroenterol. 23, 2124-2140.
    Reedy, A.R., Luo, L., Neish, A.S.,Jones, R.M., 2019. Commensal microbiota-induced redox signaling activates proliferative signals in the intestinal stem cell microenvironment. Development 146, dev171520.
    Ren, F., Wang, K., Zhang, T., Jiang, J., Nice, E.C.,Huang, C., 2015. New insights into redox regulation of stem cell self-renewal and differentiation. Biochim. Biophys. Acta. 1850, 1518-1526.
    Rubert, J., Schweiger, P.J., Mattivi, F., Tuohy, K., Jensen, K.B.,Lunardi, A., 2020. Intestinal organoids: A tool for modelling diet-microbiome-host interactions. Trends Endocrinol. Metab. 31, 848-858.
    Saffarian, A., Mulet, C., Regnault, B., Amiot, A., Tran-Van-Nhieu, J., Ravel, J., Sobhani, I., Sansonetti, P.J.,Pedron, T., 2019. Crypt- and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients. mBio 10, e01315-e01319.
    Scheppach, W., 1994. Effects of short chain fatty acids on gut morphology and function. Gut 35, S35-S38.
    Sengupta, S., Peterson, T.R., Laplante, M., Oh, S.,Sabatini, D.M., 2010. Mtorc1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100-1104.
    Sinha, S.R., Haileselassie, Y., Nguyen, L.P., Tropini, C., Wang, M., Becker, L.S., Sim, D., Jarr, K., Spear, E.T., Singh, G., et al., 2020. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659-670.
    Siwczak, F., Loffet, E., Kaminska, M., Koceva, H., Mahe, M.M.,Mosig, A.S., 2021. Intestinal stem cell-on-chip to study human host-microbiota interaction. Front Immunol. 12, 798552.
    Sodhi, C.P., Neal, M.D., Siggers, R., Sho, S., Ma, C., Branca, M.F., Prindle, T., Jr., Russo, A.M., Afrazi, A., Good, M., et al., 2012. Intestinal epithelial toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 143, 708-718.e705.
    Sodhi, C.P., Shi, X.H., Richardson, W.M., Grant, Z.S., Shapiro, R.A., Prindle, T., Jr., Branca, M., Russo, A., Gribar, S.C., Ma, C., et al., 2010. Toll-like receptor-4 inhibits enterocyte proliferation via impaired beta-catenin signaling in necrotizing enterocolitis. Gastroenterology 138, 185-196.
    Sorrentino, G., Perino, A., Yildiz, E., El Alam, G., Bou Sleiman, M., Gioiello, A., Pellicciari, R.,Schoonjans, K., 2020. Bile acids signal via tgr5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology 159, 956-968 e958.
    Stedman, A., Brunner, K.,Nigro, G., 2019. Decrypting the communication between microbes and the intestinal mucosa-a brief review on pathogenie microbienne moleculaire's latest research. Cell Microbiol. 21, e13118.
    Stekovic, S., Hofer, S.J., Tripolt, N., Aon, M.A., Royer, P., Pein, L., Stadler, J.T., Pendl, T., Prietl, B., Url, J., et al., 2019. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab. 30, 462-476.
    Tan, D.Q.,Suda, T., 2018. Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function. Antioxid Redox Signal. 29, 149-168.
    Tinkum, K.L., Stemler, K.M., White, L.S., Loza, A.J., Jeter-Jones, S., Michalski, B.M., Kuzmicki, C., Pless, R., Stappenbeck, T.S., Piwnica-Worms, D., et al., 2015. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival. Proc. Natl. Acad. Sci. U. S. A. 112, E7148-E7154.
    Viswanathan, V.K., 2014. Muramyl dipeptide: Not just another brick in the wall. Gut Microbes 5, 275-276.
    von Frieling, J., Faisal, M.N., Sporn, F., Pfefferkorn, R., Nolte, S.S., Sommer, F., Rosenstiel, P.,Roeder, T., 2020. A high-fat diet induces a microbiota-dependent increase in stem cell activity in the drosophila intestine. PLoS Genet.16, e1008789.
    Wang, Q., Zhou, Y., Rychahou, P., Fan, T.W., Lane, A.N., Weiss, H.L.,Evers, B.M., 2017. Ketogenesis contributes to intestinal cell differentiation. Cell Death Differ. 24, 458-468.
    Wilhelm, C., Surendar, J.,Karagiannis, F., 2021. Enemy or ally? Fasting as an essential regulator of immune responses. Trends Immunol. 42, 389-400.
    Wrzosek, L., Miquel, S., Noordine, M.L., Bouet, S., Joncquel Chevalier-Curt, M., Robert, V., Philippe, C., Bridonneau, C., Cherbuy, C., Robbe-Masselot, C., et al., 2013. Bacteroides thetaiotaomicron and faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 11, 61.
    Xiang, J., Zhang, Z., Xie, H., Zhang, C., Bai, Y., Cao, H., Che, Q., Guo, J.,Su, Z., 2021. Effect of different bile acids on the intestine through enterohepatic circulation based on fxr. Gut Microbes 13, 1949095.
    Xie, Y., Ding, F., Di, W., Lv, Y., Xia, F., Sheng, Y., Yu, J.,Ding, G., 2020. Impact of a highвасfat diet on intestinal stem cells and epithelial barrier function in middleвасaged female mice. Mol. Med. Rep. 21, 1133-1144.
    Xing, P.Y., Pettersson, S.,Kundu, P., 2020. Microbial metabolites and intestinal stem cells tune intestinal homeostasis. Proteomics 20, e1800419.
    Xu, J., Huang, D., Xu, X., Wu, X., Liu, L., Niu, W., Lu, L.,Zhou, H., 2021. An elevated deoxycholic acid level induced by high-fat feeding damages intestinal stem cells by reducing the ileal il-22. Biochem. Biophys Res. Commun. 579, 153-160.
    Yang, W., Yu, T., Huang, X., Bilotta, A.J., Xu, L., Lu, Y., Sun, J., Pan, F., Zhou, J., Zhang, W., et al., 2020. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell il-22 production and gut immunity. Nat. Commun. 11, 4457.
    Yi, H., Patel, A.K., Sodhi, C.P., Hackam, D.J.,Hackam, A.S., 2012. Novel role for the innate immune receptor toll-like receptor 4 (tlr4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis. PLoS ONE 7, e36560.
    Yilmaz, O.H., Katajisto, P., Lamming, D.W., Gultekin, Y., Bauer-Rowe, K.E., Sengupta, S., Birsoy, K., Dursun, A., Yilmaz, V.O., Selig, M., et al., 2012. Mtorc1 in the paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490-495.
    Yin, X., Farin, H.F., van Es, J.H., Clevers, H., Langer, R., Karp, J.M., 2014. Niche-independent high-purity cultures of lgr5+ intestinal stem cells and their progeny. Nat. Methods. 11, 106-112.
    Yousefi, M., Nakauka-Ddamba, A., Berry, C.T., Li, N., Schoenberger, J., Simeonov, K.P., Cedeno, R.J., Yu, Z., Lengner, C.J., 2018. Calorie restriction governs intestinal epithelial regeneration through cell-autonomous regulation of mtorc1 in reserve stem cells. Stem Cell Reports 10, 703-711.
    Zhang, W., An, Y., Qin, X., Wu, X., Wang, X., Hou, H., Song, X., Liu, T., Wang, B., Huang, X., et al., 2021. Gut microbiota-derived metabolites in colorectal cancer: The bad and the challenges. Front. Oncol. 11, 739648.
    Zhang, Y.G., Lu, R., Wu, S., Chatterjee, I., Zhou, D., Xia, Y.,Sun, J., 2020. Vitamin d receptor protects against dysbiosis and tumorigenesis via the jak/stat pathway in intestine. Cell Mol. Gastroenterol Hepatol. 10, 729-746.
    Zhou, J.Y., Huang, D.G., Qin, Y.C., Li, X.G., Gao, C.Q., Yan, H.C.,Wang, X.Q., 2019. Mtorc1 signaling activation increases intestinal stem cell activity and promotes epithelial cell proliferation. J. Cell Physiol. 234, 19028-19038.
    Zhou, X., Chen, C., Zhong, Y.N., Zhao, F., Hao, Z., Xu, Y., Lai, R., Shen, G.,Yin, X., 2020. Effect and mechanism of vitamin d on the development of colorectal cancer based on intestinal flora disorder. J. Gastroenterol Hepatol. 35, 1023-1031.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (182) PDF downloads (18) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return