9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Roles of ethylene in plant growth, development, and stress responses

doi: 10.1016/j.jgg.2025.11.015
Funds:

We apologize to colleagues whose work could not be cited due to space limitations. This work is supported by the National Key R &

D Project (2021YFF1000104-2, 2023ZD0407102, 2023ZD0406801), and the CAS Strategic Priority Research Program (XDB1090101).

  • Received Date: 2025-08-05
  • Accepted Date: 2025-11-27
  • Rev Recd Date: 2025-11-26
  • Available Online: 2025-12-05
  • Ethylene, a pivotal gaseous phytohormone, regulates diverse processes in plant growth, development, and stress adaptation. In Arabidopsis, ethylene perception by endoplasmic reticulum (ER)-localized receptors initiates a canonical signaling cascade involving CONSTITUTIVE TRIPLE RESPONSE 1 (AtCTR1) and ETHYLENE INSENSITIVE 2 (AtEIN2). This pathway culminates in nuclear translocation of AtEIN2-CEND and activation of the transcription factor AtEIN3/EIN3-LIKE1 (AtEIL1). Rice employs conserved (OsEIN2, OsCTR2, OsEIL1/2) and unique (Mao Huzi 3 [MHZ3], MHZ11, MHZ1) components for ethylene signaling, reflecting adaptations to semi-aquatic environments. Ethylene regulates developmental processes including seed germination, apical hook formation, root architecture, flowering, and senescence, often via intricate crosstalk with auxin, abscisic acid (ABA), jasmonic acid (JA), gibberellins (GA), and brassinosteroids (BR). Ethylene signaling also influences rice yield-related traits such as grain filling, grain size, and starch biosynthesis. Moreover, ethylene modulates responses to abiotic stresses (such as submergence, hypoxia, salinity, drought, and temperature fluctuations) and nutrient imbalances. This review synthesizes current understanding of ethylene signaling and its functions, focusing on the model dicot Arabidopsis thaliana and the monocot rice (Oryza sativa). It highlights conserved and diverged mechanisms, underscoring ethylene’s potential as a target for enhancing crop resilience and productivity in changing environments.
  • loading
  • Abozeid, A., Ying, Z., Lin, Y., Liu, J., Zhang, Z., Tang, Z., 2017. Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana. Front. Plant Sci. 8, 253.
    Achard, P., Baghour, M., Chapple, A., Hedden, P., Van Der Straeten, D., Genschik, P.,T. Moritz, T., Harberd, N.P., 2007. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc. Natl. Acad. Sci. U. S. A. 104, 6.
    Achard, P., Vriezen, W.H., Van Der Straeten, D., Harberd, N.P., 2003. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15, 2816-2825.
    Aizezi, Y., Shu, H., Zhang, L., Zhao, H., Peng, Y., Lan, H., Xie, Y., Li, J., Wang, Y., Guo, H., et al., 2022. Cytokinin regulates apical hook development via the coordinated actions of EIN3/EIL1 and PIF transcription factors in Arabidopsis. J. Exp. Bot. 73, 213-227.
    Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S., Ecker, J.R., 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284, 2148-2152.
    Alvi, A.F., Khan, S., Khan, N.A., 2024a. Hydrogen sulfide and ethylene regulate photosynthesis, sugar metabolism, and tolerance to heat stress in the presence of sulfur in rice. Physiol. Plant. 176, 108437.
    Alvi, A.F., Khan, S., Khan, N.A., 2024b. Hydrogen sulfide and ethylene regulate sulfur-mediated stomatal and photosynthetic responses and heat stress acclimation in rice. Plant Physiol. Biochem. 207, 70013.
    Aman, S., Swain, S., Dutta, E., Abbas, S., Li, N., Shakeel, S.N., Binder, B.M., Schaller, G.E., 2025. Modulation of plant growth and development through altered ethylene binding affinity of the ethylene receptor ETR1. BMC Plant Biol. 25, 436.
    An, F., Zhang, X., Zhu, Z., Ji, Y., He, W., Jiang, Z., Li, M., Guo, H., 2012. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res. 22, 915-927.
    Angulo, M., Garcia, M.J., Alcantara, E., Perez-Vicente, R., Romera, F.J., 2021. Comparative study of several Fe deficiency responses in the Arabidopsis thaliana ethylene insensitive mutants ein2-1 and ein2-5. Plants (Basel) 10, 262.
    Azhar, B.J., Abbas, S., Aman, S., Yamburenko, M.V., Chen, W., Mullerc, L., Uzunc, B., Jewelld, D.A., Donga, J., Shakeel, S.N., et al. 2023. Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 120, e2215195120.
    Bahmani, R., Kim, D.G., Kim, J.A., Hwang, S., 2016. The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis. Front. Plant Sci. 7, 1763.
    Bakshi, A., Piya, S., Fernandez, J.C., Chervin, C., Hewezi, T., Binder, B.M., 2018. Ethylene receptors signal via a noncanonical pathway to regulate abscisic acid responses. Plant Physiol. 176, 910-929.
    Bauer, P., Blondet, E., 2011. Transcriptome analysis of ein3 eil1 mutants in response to iron deficiency. Plant Signal Behav. 6, 1669-1671.
    Beaudoin, Carine Serizet, F.G., Giraudat, a.J., 2000. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12, 13.
    Binder, B.M., Mortimore, L.A., Stepanova, A.N., Ecker, J.R., Bleecker, A.B., 2004. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiol. 136, 2921-2927.
    Binder, B.M., Walker, J.M., Gagne, J.M., Emborg, T.J., Hemmann, G., Bleecker, A.B., Vierstra, R.D., 2007. The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19, 509-523.
    Bisson, M.M.A., Groth, G., 2010. New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol. Plant. 3, 882-889.
    Bleecker, A.B., Estelle, M.A., Somerville, C., Kende, H., 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 1086-1089.
    Boualem, A., Berthet, S., Devani, R.S., Camps, C., Fleurier, S., Morin, H., Troadec, C., Giovinazzo, N., Sari, N., Dogimont, C., et al., 2022. Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Curr. Biol. 32, 2390-2401.e2394.
    Buelbuel, S., Sakuraba, Y., Sedaghatmehr, M., Watanabe, M., Hoefgen, R., Balazadeh, S., Mueller-Roeber, B., 2023. Arabidopsis BBX14 negatively regulates nitrogen starvation- and dark-induced leaf senescence. Plant J. 116, 251-268.
    Cancel, J.D., Larsen, P.B., 2002. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol. 129, 1557-1567.
    Cao, S., Chen, Z., Liu, G., Jiang, L., Yuan, H., Ren, G., Bian, X., Jian, H., Ma, X., 2009. The Arabidopsis Ethylene-Insensitive 2 gene is required for lead resistance. Plant Physiol. Biochem. 47, 308-312.
    Carbonell-Bejerano, P., Urbez, C., Granell, A., Carbonell, J., Amador, P., Perez-Amador, M.A., 2011. Ethylene is involved in pistil fate by modulating the onset of ovule senescence and the GA-mediated fruit set in Arabidopsis. BMC Plant Biol. 11, 9.
    Cela, J., Falk, J., Munne-Bosch, S., 2009. Ethylene signaling may be involved in the regulation of tocopherol biosynthesis in Arabidopsis thaliana. FEBS Lett. 583, 992-996.
    Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., Ecker J. R., 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89, 12.
    Chen, C.Y., Shao, Z., Wang, G., Zhao, B., Hardtke, H.A., Leong, J., Zhou, T., Zhang, Y.J., Qiao, H., 2025. Histone acetyltransferase HAF2 associates with pyruvate dehydrogenase complex to control H3K14ac and H3K23ac in ethylene response. Cell Rep. 44, 115580.
    Chen, G.H., Chan, Y.L., Liu, C.P., Wang, L.C., 2012a. Ethylene response pathway is essential for ARABIDOPSIS A-FIFTEEN function in floral induction and leaf senescence. Plant Signal. Behav. 7, 457-460.
    Chen, G.H., Liu, C.P., Chen, S.C., Wang, L.C., 2012b. Role of ARABIDOPSIS A-FIFTEEN in regulating leaf senescence involves response to reactive oxygen species and is dependent on ETHYLENE INSENSITIVE2. J. Exp. Bot. 63, 275-292.
    Chen, H., Ma, B., Zhou, Y., He, S.J., Tang, S.Y., Lu, X., Xie, Q., Chen, S.Y., Zhang, J.S., 2018. E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proc. Natl. Acad. Sci. U. S. A. 115, 4513-4518.
    Chen, H., Zhang, Q., Lv, W., Yu, X., Zhang, Z., 2022a. Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice. Environ. Pollut. 302, 119063.
    Chen, M.K., Hsu, W.H., Lee, P.F., Thiruvengadam, M., Chen, H.I., Yang, C.H. 2011a., The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J. 68, 168-185.
    Chen, Q., Hu, Y., Yang, L., Zhu, B., Luo, F., 2022b. Phosphorus regulates the level of signaling molecules in rice to reduce cadmium toxicity. Curr. Issues Mol. Biol. 44, 4070-4086.
    Chen, R., Binder, B.M., Garrett, W.M., Tucker, M.L., Chang, C., Cooper, B., 2011b. Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Mol. BioSyst. 7, 2637-2650.
    Chen, T., Xu, Y., Wang, J., Wang, Z., Yang, J., Zhang, J., 2013. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J. Exp. Bot. 64, 2523-2538.
    Chen, W.H., Li, P.F., Chen, M.K., Lee, Y.I., Yang, C.H. 2015., FOREVER YOUNG FLOWER negatively regulates ethylene response DNA-binding factors by activating an ethylene-responsive factor to control Arabidopsis floral organ senescence and abscission. Plant Physiol. 168, 1666-1683.
    Chen, Y.F., Shakeel, S.N., Bowers, J., Zhao, X.C., Etheridge, N., Schaller, G.E., 2007. Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J. Biol. Chem. 282, 24752-24758.
    Chen, Y., Zhang, L., Zhang, H., Chen, L., Yu, D., 2021. ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis. J. Integr. Plant Biol. 63, 1712-1723.
    Cheng, Y., Li, Y., Yang, J., He, H., Zhang, X., Liu, J., Yang, X., 2023. Multiplex CRISPR-Cas9 knockout of EIL3, EIL4, and EIN2L advances soybean flowering time and pod set. BMC Plant Biol. 23, 519.
    Chiwocha, S.D., Cutler, A.J., Abrams, S.R., Ambrose, S.J., Yang, J., Ross, A.R., Kermode, A.R., 2005. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J. 42, 35-48.
    Cho, H.Y., Chou, M.Y., Ho, H.Y., Chen, W.C., Shih M.C., 2022. Ethylene modulates translation dynamics in Arabidopsis under submergence via GCN2 and EIN2. Sci. Adv. 8, 7863.
    Clarke, S.M., Cristescu, S.M., Miersch, O., Harren, F.J.M., Wasternack, C., Mur, L.A.J., 2009. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 182, 175-187.
    Collett, C.E., Harberd, N.P., Leyser, O., 2000. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol. 124, 9.
    Dietzen, C., Koprivova, A., Whitcomb, S.J., Langen, G., Jobe, T.O., Hoefgen, R., Kopriva, S. 2020. The transcription factor EIL1 participates in the regulation of sulfur-deficiency response. Plant Physiol. 184, 2120-2136.
    Ding, X., Shi, J., Gui, J., Zhou, H., Yan, Y., Zhu, X., Xie, B., Liu, X., He, J., 2024. Rice seed protrusion quantitative trait loci mapping through genome-wide association study. Plants (Basel) 13, 134.
    Dou, L., He, K., Higaki, T., Wang, X., Mao, T., 2018. Ethylene signaling modulates cortical microtubule reassembly in response to salt stress. Plant Physiol. 176, 2071-2081.
    Du, H., Wu, N., Cui, F., You, L., Li, X., Xiong, L., 2014a. A homolog of ETHYLENE OVERPRODUCER, OsETOL1, differentially modulates drought and submergence tolerance in rice. Plant J. 78, 834-849.
    Du, J., Li, M., Kong, D., Wang, L., Lv, Q., Wang, J., Bao, F., Gong, Q., Xia, J., He, Y., 2014b. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. J. Exp. Bot. 65, 4051-4063.
    Du, Y., Ye, C., Han, P., Sheng, Y., Li, F., Sun, H., Zhang, J., Li, J., 2025. The molecular mechanism of transcription factor regulation of grain size in rice. Plant Sci. 354, 112434.
    Fan, L., Zheng, S., Wang, X., 1997. Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9, 14.
    Fu, F.F., Xue, H.W., 2010. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol. 154, 927-938.
    Fukao, T., Bailey-Serres, J. 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. U. S. A.105,16814-16819.
    Garcia, M.J., Angulo, M., Garcia, C., Lucena, C., Alcantara, E., Perez-Vicente, R., Romera, F.J., 2021. Influence of ethylene signaling in the crosstalk between Fe, S, and P deficiency responses in Arabidopsis thaliana. Front. Plant Sci. 12, 643585.
    Ge, X.M., Cai, H.L., Lei, X., Zhou, X., Yue, M., He, J.M., 2015. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. Plant J. 82, 138-150.
    Guan, R., Su, J., Meng, X., Li, S., Liu, Y., Xu, J., Zhang, S., 2015. Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against pseudomonas syringae. Plant Physiol. 169, 299-312.
    Guo, H., Ecker, J.R., 2003. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115, 667-677.
    Guo, R., Wen, X., Zhang, W., Huang, L., Peng, Y., Jin, L., Han, H., Zhang, L., Li, W., Guo, H., 2023. Arabidopsis EIN2 represses ABA responses during germination and early seedling growth by inactivating HLS1 protein independently of the canonical ethylene pathway. Plant J. 115, 1514-1527.
    Guzman, P., Ecker, J.R., 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513-523.
    Hall, A.E., Bleecker, A.B., 2003. Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15, 2032-2041.
    Hao, D., Jin, L., Wen, X., Yu, F., Xie, Q., Guo, H., 2021. The RING E3 ligase SDIR1 destabilizes EBF1/EBF2 and modulates the ethylene response to ambient temperature fluctuations in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 118, e2024592108.
    Hao, D., Li, W., Guo, H., 2025. Ethylene signaling in Arabidopsis: a journey from historical discoveries to modern insights. Plant Hormones 1, e014.
    Harkey, A.F., Watkins, J.M., Olex, A.L., DiNapoli, K.T., Lewis, D.R., Fetrow, J.S., Binder, B.M., Muday, G.K., 2018. Identification of transcriptional and receptor networks that control root responses to ethylene. Plant Physiol. 176, 2095-2118.
    Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., et al., 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030.
    He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S., Chen, S.Y., 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903-916.
    Hu, W., Wang, R., Hao, X., Li, S., Zhao, X., Xie, Z., Wu, S., Huang, L., Tan, Y., Tian, L., et al., 2024. OsLCD3 interacts with OsSAMS1 to regulate grain size via ethylene/polyamine homeostasis control. Plant J. 119, 705-719.
    Hua, J., Sakai, H., Nourizadeh,S., Chen, Q.G., Bleecker, A.B., Ecker, J.R., Meyerowitz, E.M., 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10, 12.
    Huang, J., Wu, Q., Jing, H.K., Shen, R.F., Zhu, X.F., 2022a. Auxin facilitates cell wall phosphorus reutilization in a nitric oxide-ethylene dependent manner in phosphorus deficient rice (Oryza sativa L.). Plant Sci. 322, 111371.
    Huang, J., Zhao, X., Burger, M., Wang, Y., Chory, J., 2021a. Two interacting ethylene response factors regulate heat stress response. Plant Cell 33, 338-357.
    Huang, P., Dong, Z., Guo, P., Zhang, X., Qiu, Y., Li, B., Wang, Y., Guo, H., 2020. Salicylic acid suppresses apical hook formation via NPR1-mediated repression of EIN3 and EIL1 in Arabidopsis. Plant Cell 32, 612-629.
    Huang, S., Wang, H., Liu, S., Lu, S., Hua, J., Zou, B., 2025. Ethylene antagonizes ABA and inhibits stomatal closure and chilling tolerance in rice. J. Exp. Bot. 6, eraf052.
    Huang, T.H., Hsu, W.H., Mao, W.T., Yang, C.H., 2022b. The oncidium ethylene synthesis gene oncidium 1-Aminocyclopropane-1 carboxylic acid synthase 12 and ethylene receptor gene oncidium ETR1 Affect GA-DELLA and jasmonic acid signaling in regulating flowering time, anther dehiscence, and flower senescence in Arabidopsis. Front. Plant Sci. 13, 785441.
    Huang, Y.H., Han, J.Q., Ma, B., Cao, W.Q., Li, X.K., Xiong, Q., Zhao, H., Zhao, R., Zhang, X., Zhou, Y., et al., 2023. A translational regulator MHZ9 modulates ethylene signaling in rice. Nat. Commun. 14, 4674.
    Huang, Y., Wang, S., Shi, L., Xu, F., 2021b. JASMONATE RESISTANT 1 negatively regulates root growth under boron deficiency in Arabidopsis. J. Exp. Bot. 72, 3108-3121.
    Iida, H., Abreu, I., Lopez Ortiz, J., Peralta Ogorek, L.L., Shukla, V., Makela, M., Lyu, M., Shapiguzov, A., Licausi, F., Mahonen, A.P., 2025. Plants monitor the integrity of their barrier by sensing gas diffusion. Nature 2, 4.
    Jiang, B., Shi, Y., Zhang, X., Xin, X., Qi, L., Guo, H., Li, J., Yang, S., 2017. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 114, E6695-E6702.
    Jiang, D., Xu, H., Sheng, Y., Li, Y., Li, Y., Ou, Y., Zhang, Z., Han, H., Liu, S., Chen, G., 2025. Silicon alleviates aluminum-induced inhibition of photosynthetic and growth attributes in rice by modulating competitive pathways between ethylene and polyamines and activating antioxidant defense. Plant Physiol. Biochem. 222, 109785.
    Jin, H., Pang, L., Fang, S., Chu, J., Li, R., Zhu, Z., 2018. High ambient temperature antagonizes ethylene-induced exaggerated apical hook formation in etiolated Arabidopsis seedlings. Plant Cell Environ. 41, 2858-2868.
    Jin, J., Duan, J., Shan, C., Mei, Z., Chen, H., Feng, H., Zhu, J., Cai, W., 2020. Ethylene insensitive3-like2 (OsEIL2) confers stress sensitivity by regulating OsBURP16, the beta subunit of polygalacturonase (PG1beta-like) subfamily gene in rice. Plant Sci. 292, 110353.
    Jin, J., Essemine, J., Xu, Z., Duan, J., Shan, C., Mei, Z., Zhu, J., Cai, W., 2022. Arabidopsis ETHYLENE INSENSITIVE 3 directly regulates the expression of PG1beta-like family genes in response to aluminum stress. J. Exp. Bot. 73, 4923-4940.
    Ju, C., Yoon, G.M., Shemansky, J.M., Lin, D.Y., Ying, Z.I., Chang, J., Garrett, W.M., Kessenbrock, M., Groth, G., Tucker, M.L., et al., 2012. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 109, 19486-19491.
    Jung, J.Y., Shin, R., Schachtman, D.P., 2009. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21, 607-621.
    Kao, C.H., Yang, S.F., 1983. Role of ethylene in the senescence of detached rice leaves. Plant Physiol. 73,881-885.
    Kim, G.D., Cho, Y.H., Yoo, S.D., 2017. Regulatory functions of cellular energy sensor SNF1-related kinase1 for leaf senescence delay through ETHYLENE- INSENSITIVE3 repression. Sci. Rep. 7, 3193.
    Kim, H.J., Hong, S.H., Kim, Y.W., Lee, I.H., Jun, J.H., Phee, B.K., Rupak, T., Jeong, H., Lee, Y., Hong, B.S., et al., 2014. Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis. J. Exp. Bot. 65, 4023-4036.
    Kim, J., Chang, C., Tucker, M.L., 2015. To grow old: regulatory role of ethylene and jasmonic acid in senescence. Front. Plant Sci. 6, 20.
    Kim, J.Y., Park, C.M., 2021. A dual mode of ethylene actions contributes to the optimization of hypocotyl growth under fluctuating temperature environments. Plant Signal. Behav. 16, 1926131.
    Kim, J.Y., Park, Y.J., Lee, J.H., Kim, Z.H., Park, C.M., 2021. EIN3-mediated ethylene signaling attenuates auxin response during hypocotyl thermomorphogenesis. Plant Cell Physiol. 62, 708-720.
    Kong, X., Li, C., Zhang, F., Yu, Q., Gao, S., Zhang, M., Tian, H., Zhang, J., Yuan, X., Ding, Z., 2018. Ethylene promotes cadmium-induced root growth inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis. Plant Cell Environ. 41, 2449-2462.
    Kou, X., Watkins, C.B., Gan, S.S., 2012. Arabidopsis AtNAP regulates fruit senescence. J. Exp. Bot. 63, 6139-6147.
    Kuanar, S.R., Molla, K.A., Chattopadhyay, K., Sarkar, R.K., Mohapatra, P.K., 2019. Introgression of Sub1 (SUB1) QTL in mega rice cultivars increases ethylene production to the detriment of grain-filling under stagnant flooding. Sci. Rep. 9, 18567.
    Kumar, D., Hazra, S., Datta, R., Chattopadhyay, S., 2016. Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. Sci. Rep. 6, 36867.
    Kuroha, T., Nagai, K., Gamuyao, R., Wang, D.R., Furuta, T., Nakamori, M., Kitaoka, T.,Adachi, K., Minami, A., Mori, Y., et al., 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361, 181-186.
    Lang, T., Deng, C., Yao, J., Zhang, H., Wang, Y., Deng, S. 2020., A salt-signaling network involving ethylene, extracellular ATP, hydrogen peroxide, and calcium mediates K+/Na+ homeostasis in Arabidopsis. Int. J. Mol. Sci. 21, 8683.
    Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., Beretta, O., Vitulli, F., Alpi, A., Perata, P., 2007. Transcript profiling of the anoxic rice coleoptile. Plant Physiol. 144, 218-231.
    Lee, D.K., Jung, H., Jang, G., Jeong, J.S., Kim, Y.S., Ha, S.H., Do Choi, Y., Kim, J.K., 2016. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol. 172, 575-588.
    Lee, H.Y., Chen, Z., Zhang, C., Yoon, G.M., 2019. Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings. J. Exp. Bot. 70, 1927-1940.
    Lee, J.H., Park, Y.J., Kim, J.Y., Park, C.M., 2022. Phytochrome B conveys low ambient temperature cues to the ethylene-mediated leaf senescence in Arabidopsis. Plant Cell Physiol. 63, 326-339.
    Lee, S.H., Sakuraba, Y., Lee, T., Kim, K.W., An, G., Lee, H.Y., Paek, N.C., 2015. Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence. J. Integr. Plant Biol. 57, 562-576.
    Lei, G., Shen, M., Li, Z.G., Zhang, B., Duan, K.X., Wang, N., Cao, Y.R., Zhang, W.K., Ma, B., Ling, H.Q., et al., 2011a. EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ. 34, 1678-1692.
    Lewis, D.R., Negi, S., Sukumar, P., Muday, G.K., 2011. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138, 3485-3495.
    Li, G., Zhang, L., Wang, M., Di, D., Kronzucker, H.J., Shi, W., 2019a. The Arabidopsis AMOT1/EIN3 gene plays an important role in the amelioration of ammonium toxicity. J. Exp. Bot. 70, 1375-1388.
    Li, G., Zhang, L., Wu, J., Yue, X., Wang, M., Sun, L., Di, D., Kronzucker, H.J., Shi, W., 2022. OsEIL1 protects rice growth under NH4+ nutrition by regulating OsVTC1-3-dependent N-glycosylation and root NH4+ efflux. Plant Cell Environ. 45, 1537-1553.
    Li, J., Jia, H., Wang, J., 2014. cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots. Plant Cell Rep. 33, 447-459.
    Li, J., Xu, H.H., Liu, W.C., Zhang, X.W., Lu, Y.T., 2015a. Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol. 168, 1777-1791.
    Li, Q., Fu, H., Yu, X., Wen, X., Guo, H., Guo, Y., Li, J., 2024a. The SALT OVERLY SENSITIVE 2-CONSTITUTIVE TRIPLE RESPONSE1 module coordinates plant growth and salt tolerance in Arabidopsis. J. Exp. Bot. 75, 391-404.
    Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., Li, M., An, F., Guo, H., 2015b. EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163, 670-683.
    Li, X.K., Huang, Y.H., Zhao, R., Cao, W.Q., Lu, L., Han, J.Q., Zhou, Y., Zhang, X., Wu, W.A., Tao, J.J., et al., 2024b. Membrane protein MHZ3 regulates the on-off switch of ethylene signaling in rice. Nat. Commun. 15, 5987.
    Li, X.K., Yin, C.C., Tao, J.J., Chen, S.Y., Zhao, H., Zhang, J.S., 2025. Ethylene signaling in rice and Arabidopsis: from the perspective of protein complexes. Plant Hormones 1, e009.
    Li, X., Chen, T., Li, Y., Wang, Z., Cao, H., Chen, F., Li, Y., Soppe, W.J.J., Li, W., Liu, Y., 2019b. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION1 expression. Plant Cell 31, 832-847.
    Li, X., Pan, Y., Chang, B., Wang, Y., Tang, Z., 2015c. NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis. Front. Plant Sci. 6, 1203.
    Li, Y., Cheng, Y., Wei, F., Liu, Y., Zhu, R., Zhao, P., Zhang, J., Xiang, C., Kang, E., Shang, Z., 2024c. Arabidopsis thaliana MYC2 and MYC3 are involved in ethylene-regulated hypocotyl growth as negative regulators. Int. J. Mol. Sci. 25, 8022.
    Li, Y., Wang, J., Gao, Y., Pandey, B.K., Peralta Ogorek, L.L., Zhao, Y., Quan, R., Zhao, Z., Jiang, L., Huang, R., et al., 2024d. The OsEIL1-OsWOX11 transcription factor module controls rice crown root development in response to soil compaction. Plant Cell 36, 2393-2409.
    Li, Y., Ren, M., Wu, Y., Wang, L., Zhao, K., Gao, H., Li, M., Liu, Y., Zhu, J., Xu, J., et al., 2025. A root system architecture regulator modulates OsPIN2 polar localization in rice. Nat. Commun. 16, 1-13.
    Li, Z., Liu, H., Ding, Z., Yan, J., Yu, H., Pan, R., Hu, J., Guan, Y., Hua, J., 2020. Low temperature enhances plant immunity via salicylic acid pathway genes that are repressed by ethylene. Plant Physiol. 182, 626-639.
    Li, Z., Peng, J., Wen, X., Guo, H., 2013. Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25, 3311-3328.
    Liang, S., Xiong, W., Yin, C., Xie, X., Jin, Y.J., Zhang, S., Yang, B., Ye, G., Chen, S., Luan, W.J., 2019. Overexpression of OsARD1 improves submergence, drought, and salt tolerances of seedling through the enhancement of ethylene synthesis in rice. Front. Plant Sci. 10, 1088.
    Liebsch, D., Juvany, M., Li, Z., Wang, H.L., Ziolkowska, A., Chrobok, D., Boussardon, C., Wen, X., Law, S.R., Janeckova, H., et al., 2022. Metabolic control of arginine and ornithine levels paces the progression of leaf senescence. Plant Physiol. 189, 1943-1960.
    Lim, C., Kang, K., Shim, Y., Sakuraba, Y., An, G., Paek, N.C., 2020. Rice ETHYLENE RESPONSE FACTOR 101 promotes leaf senescence through jasmonic acid-mediated regulation of OsNAP and OsMYC2. Front. Plant Sci. 11, 1096.
    Lin, Y., Liu, B., Hu, Y., Li, G., Liu, Z., Ding, Y., Chen, L., 2025. Facilitating phloem-mediated iron transport can improve the adaptation of rice seedlings to iron deficiency stress. Rice 18, 54.
    Lin, Y., Yang, L., Paul, M., Zu, Y., Tang, Z., 2013. Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiol. Biochem. 73, 211-218.
    Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube, C., Blondet, E., Genschik, P., Bauer, P., 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 23, 1815-1829.
    Liu, C., Ma, T., Yuan, D., Zhou, Y., Long, Y., Li, Z., Dong, Z., Duan, M., Yu, D., Jing, Y., et al., 2022. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnol. J. 20, 1470-1486.
    Liu, G., Gao, S., Tian, H., Wu, W., Robert, H.S., Ding, Z., 2016. Local Transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis. PLoS Genet. 12, e1006360.
    Liu, Y., Xie, Y., Wang, H., Ma, X., Yao, W., Wang, H., 2017. Light and ethylene coordinately regulate the phosphate starvation response through transcriptional regulation of PHOSPHATE STARVATION RESPONSE1. Plant Cell 29, 2269-2284.
    Liu, Z., Hartman, S., van Veen, H., Zhang, H., Leeggangers, H.A.C.F., Martopawiro, S., Bosman, F., de Deugd, F., Su, P., Hummel, M., et al., 2022. Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. Plant Physiol. 190, 1365-1383.
    Lv, S.F., Jia, M.Z., Zhang, S.S., Han, S., Jiang, J., 2019. The dependence of leaf senescence on the balance between 1-aminocyclopropane-1-carboxylate acid synthase 1 (ACS1)-catalysed ACC generation and nitric oxide-associated 1 (NOS1)-dependent NO accumulation in Arabidopsis. Plant Biol (Stuttg). 21, 595-603.
    Lv, Y., Shao, G., Jiao, G., Sheng, Z., Xie, L., Hu, S., Tang, S., Wei, X., Hu, P., 2021. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Mol Plant. 14, 344-351.
    Ma, B., He, S.J., Duan, K.X., Yin, C.C., Chen, H., Yang, C., Xiong, Q., Song, Q.X., Lu, X., Chen, H.W., et al., 2013. Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Mol Plant. 6, 1830-1848.
    Ma, B., Yin, C.C., He, S.J., Lu, X., Zhang, W.K., Lu, T.G., Chen, S.Y., Zhang, J.S., 2014. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet. 10, e1004701.
    Ma, B., Zhang, L., He, Z., 2023. Understanding the regulation of cereal grain filling: The way forward. J. Integr. Plant Biol. 65, 526-547.
    Ma, B., Zhou, Y., Chen, H., He, S.J., Huang, Y.H., Zhao, H., Lu, X., Zhang, W.K., Pang, J.H., Chen, S.Y., et al., 2018. Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain. Proc. Natl. Acad. Sci. U. S. A. 115, 2520-2525.
    Ma, F., Yang, X., Shi, Z., Miao, X., 2019. Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice. New Phytol. 225, 474-487.
    Mai, H., Qin, T., Wei, H., Yu, Z., Pang, G., Liang, Z., Ni, J., Yang, H., Tang, H., Xiao, L., et al., 2024. Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice. Plant Biotechnol. J. 22, 833-847.
    Maric, A., 2023. Beyond the genetics of flowering: Integration of ethylene signaling and histone methylation controls flowering time. Plant Physiol. 192, 2224-2226.
    Martin-Rejano, E.M., Camacho-Cristobal, J.J., Herrera-Rodriguez, M.B., Rexach, J., Navarro-Gochicoa, M.T., Gonzalez-Fontes, A., 2011. Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings. Physiol Plant. 142, 170-178.
    Martin, R.E., Marzol, E., Estevez, J.M., Muday, G.K., 2022. Ethylene signaling increases reactive oxygen species accumulation to drive root hair initiation in Arabidopsis. Development 149, dev200487.
    Masood, J., Zhu, W., Fu, Y., Li, Z., Zhou, Y., Zhang, D., Han, H., Yan, Y., Wen, X., Guo, H., et al. 2023. Scaffold protein RACK1A positively regulates leaf senescence by coordinating the EIN3-miR164-ORE1 transcriptional cascade in Arabidopsis. J. Integr. Plant Biol. 65, 1703-1716.
    Mazzella, M.A., Casal, J.J., Muschietti, J.P., Fox, A.R., 2014. Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 5, 52.
    Mekhedov, S.I., Kende, H., 1996. Submergence enhances expression of a gene encoding 1-Aminocyclopropane-1-Carboxylate oxidase in deepwater rice. Plant Cell Physiol. 37, 531-537.
    Mendez-Bravo, A., Ruiz-Herrera, L.F., Cruz-Ramirez, A., Guzman, P., Martinez-Trujillo, M., Ortiz-Castro, R., Lopez-Bucio, J., 2019. CONSTITUTIVE TRIPLE RESPONSE1 and PIN2 act in a coordinate manner to support the indeterminate root growth and meristem cell proliferating activity in Arabidopsis seedlings. Plant Sci. 280, 175-186.
    Miao, Z.Q., Zhao, P.X., Mao, J.L., Yu, L.H., Yuan, Y., Tang, H., Liu, Z.B., Xiang, C.B., 2018. HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. Plant Cell 30, 2761-2778.
    Mishra, V., Singh, A., Gandhi, N., Sarkar Das, S., Yadav, S., Kumar, A., Sarkar, A.K., 2022. A unique miR775-GALT9 module regulates leaf senescence in Arabidopsis during post-submergence recovery by modulating ethylene and the abscisic acid pathway. Development 149, dev19974.
    Misyura, M., Guevara, D., Subedi, S., Hudson, D., McNicholas, P.D.,Colasanti, J., Rothstein, S.J., 2014. Nitrogen limitation and high density responses in rice suggest a role for ethylene under high density stress. BMC Genomics. 15, 681.
    Moussatche, P., Klee, H.J., 2004. Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J. Biol. Chem. 279, 48734-48741.
    Nie, H., Zhao, C., Wu, G., Wu, Y., Chen, Y., Tang, D., 2012. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol. 158, 1847-1859.
    Niu, Y.H., Guo, F.Q., 2012. Nitric oxide regulates dark-induced leaf senescence through EIN2 in Arabidopsis. J. Integr. Plant Biol. 54, 516-525.
    Pan, Y.J., Liu, L., Lin, Y.C., Zu, Y.G., Li, L.P., Tang, Z.H., 2016. Ethylene Antagonizes salt-induced growth retardation and cell death process via transcriptional controlling of ethylene-, BAG- and senescence-associated genes in Arabidopsis. Front. Plant Sci. 7, 696.
    Panda, B.B., Badoghar, A.K., Sekhar, S., Shaw, B.P., Mohapatra, P.K., 2016. 1-MCP treatment enhanced expression of genes controlling endosperm cell division and starch biosynthesis for improvement of grain filling in a dense-panicle rice cultivar. Plant Sci. 246, 11-25.
    Panda, B.B., Kariali, E., Panigrahi, R., Mohapatra, P.K., 2009. High ethylene production slackens seed filling in compact panicled rice cultivar. Plant Growth Regul. 58, 141-151.
    Pandey, S., Ranade, S.A.,Nagar, P.K., Kumar, N., 2000. Role of polyamines and ethylene as modulators of plant senescence. J. Biosci. 25, 9.
    Panigrahi, R., Kariali, E., Panda, B.B., Lafarge, T., Mohapatra, P.K., 2019. Corrigendum to: Controlling the trade-off between spikelet number and grain filling: the hierarchy of starch synthesis in spikelets of rice panicle in relation to hormone dynamics. Funct. Plant Biol. 46, 595.
    Panigrahi, S., Panigrahy, M., Kariali, E., Dash, S.K., Sahu, B.B., Sahu, S.K., Mohapatra, P.K., Panigrahi, K.C.S., 2021. MicroRNAs modulate ethylene induced retrograde signal for rice endosperm starch biosynthesis by default expression of transcriptome. Sci. Rep. 11, 5573.
    Park, H.L., Seo, D.H., Lee, H.Y., Bakshi, A., Park, C., Chien, Y.C., Kieber, J.J., Binder, B.M., Yoon, G.M., 2023. Ethylene-triggered subcellular trafficking of CTR1 enhances the response to ethylene gas. Nat. Commun. 14, 365.
    Park, S.I., Kwon, H.J., Cho, M.H., Song, J.S., Kim, B.-G., Baek, J., Kim, S.L., Ji, H., Kwon, T.R., Kim, K.H., et al., 2021. The OsERF115/AP2EREBP110 transcription factor is involved in the multiple stress tolerance to heat and drought in rice plants. Int. J. Mol. Sci. 22, 7181.
    Peng, H.P., Chan, C.S., Shih, M.C., Yang, S.F., 2001. Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. Plant Physiol. 126, 7.
    Peng, H.P., Lin, T.Y., Wang, N.N., Shih, M.C., 2005. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol. Biol. 58, 15-25.
    Peng, X., Li, H., Xu, W., Yang, Q., Li, D., Fan, T., Li, B., Ding, J., Ku, W., Deng, D., et al., 2024. The AtMINPP gene, encoding a multiple inositol polyphosphate phosphatase, coordinates a novel crosstalk between phytic acid metabolism and ethylene signal transduction in leaf senescence. Int. J. Mol. Sci. 25, 8969.
    Piao, W., Kim, E.Y., Han, S.H., Sakuraba, Y., Paek, N.C., 2015. Rice Phytochrome B (OsPhyB) negatively regulates dark- and starvation-induced leaf senescence. Plants (Basel) 4, 644-663.
    Pitts, R.J., Cernac, A., Estelle, M., 1998. Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J. 16, 553-560.
    Qiao, H., Chang, K.N., Yazaki, J., Ecker, J.R., 2009. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 23, 512-521.
    Qiao, H., Shen, Z., Huang, S.S., Schmitz, R.J., Urich, M.A., Briggs, S.P., Ecker, J.R., 2012. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338, 390-393.
    Qiao, J., Quan, R., Wang, J., Li, Y., Xiao, D., Zhao, Z., Huang, R., Qin, H., 2024. OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil. Plant Commun. 5, 100771.
    Qiu, K., Li, Z., Yang, Z., Chen, J., Wu, S., Zhu, X., Gao, S., Gao, J., Ren, G., Kuai, B., et al., 2015. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet. 11, e1005399.
    Qu, X., Hall, B.P., Gao, Z., Schaller, G.E., 2007. A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol. 7, 3.
    Qu, X., Schaller, G.E., 2004. Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol. 136, 2961-2970.
    Quan, R., Wang, J., Yang, D., Zhang, H., Zhang, Z., Huang, R., 2017. EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci. Rep. 7, 44637.
    Rahman, A., Hosokawa, S., Oono, Y., Amakawa, T., Goto, N., Tsurumi, S., 2002. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol. 130, 1908-1917.
    Rankenberg, T., van Veen, H., Sedaghatmehr, M., Liao, C.Y., Devaiah, M.B., Stouten, E.A., Balazadeh, S., Sasidharan, R., 2024. Differential leaf flooding resilience in Arabidopsis thaliana is controlled by ethylene signaling-activated and age-dependent phosphorylation of ORESARA1. Plant Commun. 5, 100848.
    Raz, V., Ecker, J.R., 1999. Regulation of differential growth in the apical hook of Arabidopsis. Development 126, 8.
    Ren, D., Ding, C., Qian, Q., 2023. Molecular bases of rice grain size and quality for optimized productivity. Science Bulletin 68, 314-350.
    Robles, L.M., Deslauriers, S.D., Alvarez, A.A., Larsen, P.B., 2012. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. J. Exp. Bot. 63, 2231-2241.
    Rzewuski, G., Cornell, K.A., Rooney, L., Burstenbinder, K., Wirtz, M., Hell, R., Sauter, M., 2007. OsMTN encodes a 5′-methylthioadenosine nucleosidase that is up-regulated during submergence-induced ethylene synthesis in rice (Oryza sativa L.). J. Exp. Bot. 58, 1505-1514.
    Sakai, H., Hua, J., Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B., Meyerowitz, E.M., 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 95, 6.
    Sakuraba, Y., Jeong, J., Kang, M.Y., Kim, J., Paek, N.C., Choi, G., 2014. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5, 4636.
    Salimonti, A., Forgione, I., Sirangelo, T.M., Puccio, G., Mauceri, A., Mercati, F., Sunseri, F., Carbone, F., 2021. A complex gene network mediated by ethylene signal transduction TFs defines the flower induction and differentiation in Olea europaea L. Genes 12, 545.
    Sauter, M., Lorbiecke, R., OuYang, B., Pochapsky, T.C., Rzewuski, G., 2005. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. Plant J. 44, 718-729.
    Schaller, G.E., Ladd, A.N., Lanahan, M.B., Spanbauer, J.M., Bleecker, A.B., 1995. The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J. Biol. Chem. 270, 12526-12530.
    Schellingen, K., Van Der Straeten, D., Remans, T., Vangronsveld, J., Keunen, E., Cuypers, A., 2015. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana. Plant Sci. 239, 137-146.
    Schmidt, R., Schippers, J.H.M., Mieulet, D., Watanabe, M., Hoefgen, R., Guiderdoni, E., Mueller-Roeber, B., 2014. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice. Mol. Plant. 7, 404-421.
    Schumacher, K., Chen, Y.F., Gao, Z., Kerris, R.J., Wang, W., Binder, B.M., Schaller, G.E., 2010. Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis. PLoS ONE 5, e8640.
    Sekhar, S., Panda, B.B., Mohapatra, T., Das, K., Shaw, B.P., Kariali, E., Mohapatra, P.K., 2015. Spikelet-specific variation in ethylene production and constitutive expression of ethylene receptors and signal transducers during grain filling of compact- and lax-panicle rice (Oryza sativa) cultivars. J. Plant Physiol. 179, 21-34.
    Shakeel, S.N., Gao, Z., Amir, M., Chen, Y.F., Rai, M.I., Haq, N.U., Schaller, G.E., 2015. Ethylene regulates levels of ethylene receptor/CTR1 signaling complexes in Arabidopsis thaliana. J. Biol. Chem. 290, 12415-12424.
    Shao, Z., Bai, Y., Huq, E., Qiao, H., 2024. LHP1 and INO80 cooperate with ethylene signaling for warm ambient temperature response by activating specific bivalent genes. Cell Rep. 43, 114758.
    Shemer, T., Schulze, S., Nissan-Roda, D., Bosmans, K., Shapira, O., Weckwerth, P., Zamora, O., Yarmolinsky, D., Trainin, T., Kollist, H., et al., 2023. A role for ethylene signaling and biosynthesis in regulating and accelerating CO2 - and abscisic acid-mediated stomatal movements in Arabidopsis. New Phytol. 238, 2460-2475.
    Shen, X., Li, Y., Pan, Y., Zhong, S., 2016. Activation of HLS1 by mechanical stress via ethylene-stabilized EIN3 is crucial for seedling soil emergence. Front. Plant Sci. 7, 1571.
    Shi, Y., Tian, S., Hou, L., Huang, X., Zhang, X., Guo, H., Yang, S., 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24, 2578-2595.
    Smalle, J., Haegman, M., Kurepa, J., Montagu, M.V., Straeten, D.V.D., 1996. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc. Natl. Acad. Sci. U. S. A. 94, 6.
    Smet, D., Zadnikova, P., Vandenbussche, F., Benkova, E., Van Der Straeten, D., 2014. Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids. New Phytol. 202, 1398-1411.
    Song, L., Yu, H., Dong, J., Che, X., Jiao, Y., Liu, D., 2016. The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation. PLoS Genet. 12, e1006194.
    Subbiah, V., Reddy, K.J., 2010. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J Biosci. 35, 451-458.
    Sun, G., Mei, Y., Deng, D., Xiong, L., Sun, L., Zhang, X., Wen, Z., Liu, S., You, X., Nasrullah, Wang, D., et al., 2017a. N-terminus-mediated degradation of ACS7 is negatively regulated by senescence signaling to Allow optimal ethylene production during leaf development in Arabidopsis. Front. Plant Sci. 8, 2066.
    Sun, L., Di, D., Li, G., Kronzucker, H.J., Shi, W., 2017b. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress. J. Plant Physiol. 212, 94-104.
    Sun, P., Tian, Q.Y., Chen, J., Zhang, W.H., 2010. Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J. Exp. Bot. 61, 347-356.
    Sun, Y., Li, J.Q., Yan, J.Y., Yuan, J.J., Li, G.X., Wu, Y.R., Xu, J.M., Huang, R.F., Harberd, N.P., Ding, Z.J., et al., 2020. Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor. J. Integr. Plant Biol. 62, 1193-1212.
    Tang, D., Innes, R.W., 2002. Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J. 32, 9.
    Tang, X., Mei, Y., He, K., Liu, R., Lv, X., Zhao, Y., Li, W., Wang, Q., Gong, Q., Li, S., et al., 2024. The RING-type E3 ligase RIE1 sustains leaf longevity by specifically targeting AtACS7 to fine-tune ethylene production in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 121, e2411271121.
    Tao, J.J., Chen, H.W., Ma, B., Zhang, W.K., Chen, S.Y., Zhang, J.S., 2015. The role of ethylene in plants under salinity stress. Front. Plant Sci. 6, 1059.
    Tao, Q., Liu, J., Zhang, K., Yan, M., Li, M., Wu, Y., Wang, C., Li, B., 2025. Ethylene-mediated root endodermal barrier development in impeding Cd radial transport and accumulation in rice (Oryza sativa L.). Plant Physiol. Biochem. 219, 109313.
    Tao, S., Zhang, Y., Wang, X., Xu, L., Fang, X., Lu, Z.J., Liu, D., 2016. The THO/TREX complex active in miRNA biogenesis negatively regulates root-associated acid phosphatase activity induced by phosphate starvation. Plant Physiol. 171, 2841-2853.
    Tao, Y., Wang, J., Miao, J., Chen, J., Wu, S., Zhu, J., Zhang, D., Gu, H., Cui, H., Shi, S., et al., 2018. The spermine synthase OsSPMS1 regulates seed germination, Grain Size, and Yield. Plant Physiol. 178, 1522-1536.
    Thomann, A., Lechner, E., Hansen, M., Dumbliauskas, E., Parmentier, Y., Kieber, J., Scheres, B., Genschik, P., 2009. Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and -independent mechanisms. PLoS Genet. 5, e1000328.
    Tsai, K.J., Chou, S.J., Shih, M.C., 2014. Ethylene plays an essential role in the recovery of Arabidopsis during post-anaerobiosis reoxygenation. Plant Cell Environ. 37, 2391-2405.
    Tsai, K.J., Lin, C.Y., Ting, C.Y., Shih, M.C., 2016. Ethylene-regulated glutamate dehydrogenase fine-tunes metabolism during anoxia-reoxygenation. Plant Physiol. 172, 1548-1562.
    Ueda, H., Ito, T., Inoue, R., Masuda, Y., Nagashima, Y., Kozuka, T., Kusaba, M., 2020. Genetic interaction among phytochrome, ethylene and abscisic acid signaling during dark-induced senescence in Arabidopsis thaliana. Front. Plant Sci. 11, 564.
    Vandenbussche, F., Petrasek, J., Zadnikova, P., Hoyerova, K., Pesek, B., Raz, V., Swarup, R., Bennett, M., Zazimalova, E., Benkova, E., et al., 2010. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137, 597-606.
    Vaseva, I.I., Simova-Stoilova, L., Kirova, E., Mishev, K., Depaepe, T., Van Der Straeten, D., Vassileva, V., 2021. Ethylene signaling in salt-stressed Arabidopsis thaliana ein2-1 and ctr1-1 mutants - A dissection of molecular mechanisms involved in acclimation. Plant Physiol. Biochem. 167, 999-1010.
    Voesenek, L.A.C.J., Bailey-Serres, J., 2015. Flood adaptive traits and processes: an overview. New Phytol. 206, 57-73.
    Volz, R., Heydlauff, J., Ripper, D., von Lyncker, L., Gross-Hardt, R. 2013. Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. Dev Cell. 25, 310-316.
    Wan, L.Y., Zhang, J.F., Zhang, H.W., Zhang, Z.J., Quan, R.D., Zhou, S.R., Huang, R., 2011. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS ONE. 6, e25216.
    Wang, C., Dai, S., Zhang, Z.L., Lao, W., Wang, R., Meng, X., Zhou, X., 2021. Ethylene and salicylic acid synergistically accelerate leaf senescence in Arabidopsis. J. Integr. Plant Biol. 63, 828-833.
    Wang, H., Sun, Y., Chang, J., Zheng, F., Pei, H., Yi, Y., Chang, C., Dong, C.H., 2016. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. Plant Mol. Biol. 91, 471-484.
    Wang, H.Q., Sun, L.P., Wang, L.X., Fang, X.W., Li, Z.Q., Zhang, F.F., Hu, X., Qi, C., He, J.M., 2020. Ethylene mediates salicylic-acid-induced stomatal closure by controlling reactive oxygen species and nitric oxide production in Arabidopsis. Plant Sci. 294, 110464.
    Wang, J., Choi, W. G., Nguyen, N.K., Liu, D., Kim, S. H., Lim, D., Hwang, B.K., Jwa, N. S., 2024. Cytoplasmic Ca2+ influx mediates iron- and reactive oxygen species-dependent ferroptotic cell death in rice immunity. Front. Plant Sci. 15, 1339559.
    Wang, J., Sun, N., Zheng, L., Zhang, F., Xiang, M., Chen, H., Deng, X.W., Wei, N., 2023. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit. Plant Cell 35, 390-408.
    Wang, J., Wang, Y., Yang, J., Ma, C., Zhang, Y., Ge, T., Qi, Z., Kang, Y., 2015. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation. J. Integr. Plant Biol. 57, 708-721.
    Wang, Q., Zhang, W., Yin, Z., Wen, C.K., 2013. Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development. J. Exp. Bot. 64, 4863-4875.
    Wang, W.Y., Hall, A.E., O’Malley, R., Bleecker, A.B., 2003. Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc. Natl. Acad. Sci. U. S. A. 100, 6.
    Wang, W., Ye, J., Xu, H., Liu, X., Fu, Y., Zhang, H., Rouached, H., Whelan, J., Shen, Z., Zheng, L., 2022a. OsbHLH061 links TOPLESS/TOPLESS-RELATED repressor proteins with POSITIVE REGULATOR OF IRON HOMEOSTASIS 1 to maintain iron homeostasis in rice. New Phytol. 234, 1753-1769.
    Wang, X.T., Xiao, J.H., Li, L., Guo, J.F., Zhang, M.X., An, Y.Y., He, J.M., 2022b. Ethylene acts as a local and systemic signal to mediate UV-B-induced nitrate reallocation to Arabidopsis leaves and roots via regulating the ERFs-NRT1.8 signaling module. Int. J. Mol. Sci. 23, 9068.
    Wang, Y., Liu, C., Li, K., Sun, F., Hu, H., Li, X., Zhao, Y., Han, C., Zhang, W., Duan, Y., et al., 2007. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol. Biol. 64, 633-644.
    Wang, Y., Sun, L., Wang, R., Li, H., Zhu, Z., 2022c. The AP2 transcription factors TOE1/TOE2 convey Arabidopsis age information to ethylene signaling in plant de novo root regeneration. Planta 257, 1.
    Wawrzynska, A., Sirko, A., 2016. EIN3 interferes with the sulfur deficiency signaling in Arabidopsis thaliana through direct interaction with the SLIM1 transcription factor. Plant Sci. 253, 50-57.
    Wawrzynska, A., Sirko, A., 2020. Proteasomal degradation of proteins is important for the proper transcriptional response to sulfur deficiency conditions in plants. Plant Cell Physiol. 61, 1548-1564.
    Wen, X., Zhang, C., Ji, Y., Zhao, Q., He, W., An, F., Jiang, L., Guo, H., 2012. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 22, 1613-1616.
    Wilson, R.L., Kim, H., Bakshi, A., Binder, B.M., 2014. The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol. 165, 1353-1366.
    Wu, J., Coskun, D., Li, G., Wang, Z., Kronzucker, H.J., Shi, W., 2024a. OsEIL1 is involved in the response to heterogeneous high ammonium in rice: A split-root analysis. J. Plant Physiol. 295, 154205.
    Wu, J., Wang, C., Zheng, L., Wang, L., Chen, Y., Whelan, J., Shou, H., 2011. Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. J. Exp. Bot. 62, 667-674.
    Wu, Q., Xu, J., Zhao, Y., Wang, Y., Zhou, L., Ning, L., Shabala, S., Zhao, H., 2024b. Transcription factor ZmEREB97 regulates nitrate uptake in maize (Zea mays) roots. Plant Physiol. 196, 535-550.
    Wu, X.X., Yuan, D.P., Chen, H., Kumar, V., Kang, S.M., Jia, B., Xuan, Y.H., 2022. Ammonium transporter 1 increases rice resistance to sheath blight by promoting nitrogen assimilation and ethylene signalling. Plant Biotechnol. J. 20, 1085-1097.
    Wuriyanghan, H., Zhang, B., Cao, W.H., Ma, B., Lei, G., Liu, Y.F., Wei, W., Wu, H.J., Chen, L.J., Chen, H.W., et al., 2009. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21, 1473-1494.
    Xiao, F., Zhang, Y., Zhao, S., Zhou, H., 2021. MYB30 and ETHYLENE INSENEITIVE3 antagonistically regulate root hair growth and phosphorus uptake under phosphate deficiency in Arabidopsis. Plant Signal Behav. 16, e1913310.
    Xie, L.J., Yu, L.J., Chen, Q.F., Wang, F.Z., Huang, L., Xia, F.N., Zhu, T.R., Wu, J.X., Yin, J., Liao, B., et al., 2015. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism. Plant J. 81, 53-67.
    Xie, W., Ding, C., Hu, H., Dong, G., Zhang, G., Qian, Q., Ren, D., 2022. Molecular events of rice AP2/ERF transcription factors. Int. J. Mol. Sci. 23, 12013.
    Xie, Y., Ma, M., Liu, Y., Wang, B., Wei, H., Kong, D., Wang, H., 2021. Arabidopsis FHY3 and FAR1 function in age gating of leaf senescence. Front. Plant Sci. 12, 770060.
    Xiong, Q., Ma, B., Lu, X., Huang, Y.H., He, S.J., Yang, C., Yin, C.C., Zhao, H., Zhou, Y., Zhang, W.K., et al., 2017. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. Plant Cell 29, 1053-1072.
    Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., Mackill, D.J., 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705-708.
    Xu, M., Li, X., Xie, W., Lin, C., Wang, Q., Tao, Z., 2023. ETHYLENE INSENSITIVE3/EIN3-LIKE1 modulate FLOWERING LOCUS C expression via histone demethylase interaction. Plant Physiol. 192, 2290-2300.
    Yang, C., Ma, B., He, S.J., Xiong, Q., Duan, K.X., Yin, C.C., Chen, H., Lu, X., Chen, S.Y., Zhang, J.S., 2015. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol. 169, 148-165.
    Yang, C.Y., 2014. Hydrogen peroxide controls transcriptional responses of ERF73/HRE1 and ADH1 via modulation of ethylene signaling during hypoxic stress. Planta 239, 877-885.
    Yang, Y., Ou, B., Zhang, J., Si, W., Gu, H., Qin, G., Qu, L.J., 2014. The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25. Plant J. 77, 838-851.
    Yau, C.P., 2004. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. J. Exp. Bot. 55, 547-556.
    Yin, C.C., Zhang, J.S., 2025. Injured plants use gaseous cues to initiate repair of their outer layers. Nature 2, d41586.
    Yin, C.C., Huang, Y.H., Zhang, X., Zhou, Y., Chen, S.Y., Zhang, J.S., 2022. Ethylene-mediated regulation of coleoptile elongation in rice seedlings. Plant Cell Environ. 46, 1060-1074.
    Yin, C.C., Ma, B., Collinge, D.P., Pogson, B.J., He, S.J., Xiong, Q., Duan, K.X., Chen, H., Yang, C., Lu, X., et al., 2015. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway. Plant Cell 27, 1061-1081.
    Yu, J., Mao, C., Zhong, Q., Yao, X., Li, P., Liu, C., Ming, F., 2021a. OsNAC2 is involved in multiple hormonal pathways to mediate germination of rice seeds and establishment of seedling. Front. Plant Sci. 12, 699303.
    Yu, J., Wen, C.K., 2013. Arabidopsis aux1rcr1 mutation alters AUXIN RESISTANT1 targeting and prevents expression of the auxin reporter DR5:GUS in the root apex. J. Exp. Bot. 64, 921-933.
    Yu, Y., Li, W., Liu, Y., Liu, Y., Zhang, Q., Ouyang, Y., Ding, W., Xue, Y., Zou, Y., Yan, J., et al., 2025. A Zea genus-specific micropeptide controls kernel dehydration in maize. Cell 188, 44-59.
    Yu, Y., Qi, Y., Xu, J., Dai, X., Chen, J., Dong, C.H., Xiang, F., 2021b. Arabidopsis WRKY71 regulates ethylene-mediated leaf senescence by directly activating EIN2, ORE1 and ACS2 genes. Plant J. 107, 1819-1836.
    Yu, Y., Wang, J., Shi, H., Gu, J., Dong, J., Deng, X.W., Huang, R., 2016a. Salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1 to control seed germination. Plant Physiol. 170, 2340-2350.
    Yu, Y., Wang, J., Zhang, Z., Quan, R., Zhang, H., Deng, X.W., Ma, L., Huang, R., 2013. Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genet. 9, e1004025.
    Yu, Y., Yang, D., Zhou, S., Gu, J., Wang, F., Dong, J., Huang, R., 2016b. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 254, 401-408.
    Zadnikova, P., Petrasek, J., Marhavy, P., Raz, V., Vandenbussche, F., Ding, Z., Schwarzerova, K., Morita, M. T., Tasaka, M., Hejatko, J. et al., 2010. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137, 607-617.
    Zhang, C., Teng, X.D., Zheng, Q.Q., Zhao, Y.Y., Lu, J.Y., Wang, Y., Guo, H., Yang, Z.N., 2018a. Ethylene signaling is critical for synergid cell functional specification and pollen tube attraction. Plant J. 96, 176-187.
    Zhang, F., Qi, B., Wang, L., Zhao, B., Rode, S., Riggan, N.D., Ecker, J.R., Qiao, H., 2016a. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nat. Commun. 7, 13018.
    Zhang, F., Wang, L., Ko, E.E., Shao, K., Qiao, H., 2018b. Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. Plant Cell 30, 153-166.
    Zhang, G.B., Yi, H.Y., Gong, J.M., 2014a. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. Plant Cell 26, 3984-3998.
    Zhang, L., Li, Z., Quan, R., Li, G., Wang, R., Huang, R., 2011. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiol. 157, 854-865.
    Zhang, X., Zhu, Z., An, F., Hao, D., Li, P., Song, J., Yi, C., Guo, H., 2014b. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26, 1105-1117.
    Zhang, X.F., Tong, J.H., Bai, A.N., Liu, C.M., Xiao, L.T., Xue, H.W., 2020. Phytohormone dynamics in developing endosperm influence rice grain shape and quality. J. Integr. Plant Biol. 62, 1625-1637.
    Zhang, Y., He, Q., Zhao, S., Huang, L., Hao, L., 2014c. Arabidopsis ein2-1 and npr1-1 response to Al stress. Bull Environ Contam Toxicol. 93, 78-83.
    Zhang, Y., Liu, J., Chai, J., Xing, D., 2016b. Mitogen-activated protein kinase 6 mediates nuclear translocation of ORE3 to promote ORE9 gene expression in methyl jasmonate-induced leaf senescence. J. Exp. Bot. 67, 83-94.
    Zhang, Y., Liu, Z., Chen, Y., He, J.X., Bi, Y., 2015. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis. Plant Sci. 237, 57-68.
    Zhang, Y., Tan, S., Gao, Y., Kan, C., Wang, H.L., Yang, Q., Xia, X., Ishida, T., Sawa, S., Guo, H., et al., 2022. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis. New Phytol. 235, 550-562.
    Zhang, Y.J., Lynch, J.P., Brown, K.M., 2003. Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. J. Exp. Bot. 54, 2351-2361.
    Zhang, Z.G., Zhou, H.L., Chen, T., Gong, Y., Cao, W.H., Wang, Y.J., Zhang, J.S., Chen, S.Y., 2004. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. Plant Physiol. 136, 2971-2981.
    Zhao, B., Shao, Z., Wang, L., Zhang, F., Chakravarty, D., Zong, W., Dong, J., Song, L., Qiao, H., 2022a. MYB44-ENAP1/2 restricts HDT4 to regulate drought tolerance in Arabidopsis. PLoS Genet. 18, 1010473.
    Zhao, B., Wang, L., Shao, Z., Chin, K., Chakravarty, D., Qiao, H. 2021a. ENAP1 retrains seed germination via H3K9 acetylation mediated positive feedback regulation of ABI5. PLoS Genet. 17, e1009955.
    Zhao, H., Duan, K.X., Ma, B., Yin, C.C., Hu, Y., Tao, J.J., Huang, Y.H., Cao, W.Q., Chen, H., Yang, C., et al., 2020a. Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice. Nat. Commun. 11, 518.
    Zhao, H., Ma, B., Duan, K.X., Li, X.K., Lu, X., Yin, C.C., Tao, J.J., Wei, W., Zhang, W.K., Xin, P.Y., et al., 2020b. The GDSL lipase MHZ11 modulates ethylene signaling in rice roots. Plant Cell 32, 1626-1643.
    Zhao, H., Yin, C.C., Ma, B., Chen, S.Y., Zhang, J.S., 2021b. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. J. Integr. Plant Biol. 63, 102-125.
    Zhao, N., Zhao, M., Wang, L., Han, C., Bai, M., Fan, M., 2022b. EBF1 negatively regulates brassinosteroid-induced apical hook development and cell elongation through promoting BZR1 degradation. Int. J. Mol. Sci. 23, 15889.
    Zhao, R., Wu, W.A., Huang, Y.H., Li, X.K., Han, J.Q., Jiao, W., Su, Y.N., Zhao, H., Zhou, Y., Cao, W.Q., et al., 2024. An RRM domain protein SOE suppresses transgene silencing in rice. New Phytol. 243, 1724-1741.
    Zheng, D., Han, X., An, Y.I., Guo, H., Xia, X., Yin, W., 2013. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ. 36, 1328-1337.
    Zheng, Q., Li, G., Wang, H., Zhou, Z., 2023. The relationship between ethylene-induced autophagy and reactive oxygen species in Arabidopsis root cells during the early stages of waterlogging stress. PeerJ. 11, 15404.
    Zhong, S., Shi, H., Xue, C., Wei, N., Guo, H., Deng, X.W., 2014. Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proc. Natl. Acad. Sci. U. S. A. 111, 3913-3920.
    Zhou, Y., Gao, Y.H., Zhang, B.C., Yang, H.L., Tian, Y.B., Huang, Y.H., Yin, C.C., Tao, J.J., Wei, W., Zhang, W.K., et al., 2024. CELLULOSE SYNTHASE-LIKE C proteins modulate cell wall establishment during ethylene-mediated root growth inhibition in rice. Plant Cell 36, 3751-3769.
    Zhou, Y., Ma, B., Tao, J.J., Yin, C.C., Hu, Y., Huang, Y.H., Wei, W., Xin, P.Y., Chu, J.F., Zhang, W.K., et al., 2022a. Rice EIL1 interacts with OsIAAs to regulate auxin biosynthesis mediated by the tryptophan aminotransferase MHZ10/OsTAR2 during root ethylene responses. Plant Cell 34, 4366-4387.
    Zhou, Y., Xiong, Q., Yin, C.C., Ma, B., Chen, S.Y., Zhang, J.S., 2019. Ethylene biosynthesis, signaling, and crosstalk with other hormones in rice. Small Methods 4, 1900278.
    Zhou, Y., Zhang, X., Chen, J., Guo, X., Wang, H., Zhen, W., Zhang, J., Hu, Z., Zhang, X., Botella, J.R., et al., 2022b. Overexpression of AHL9 accelerates leaf senescence in Arabidopsis thaliana. BMC Plant Biol. 22, 248.
    Zhu, B.S., Zhu, Y.X., Zhang, Y.F., Zhong, X., Pan, K.Y., Jiang, Y., Wen, C.K., Yang, Z.N., Yao, X., 2022a. Ethylene activates the EIN2-EIN3/EIL1 signaling pathway in tapetum and disturbs anther development in Arabidopsis. Cells 11, 3177.
    Zhu, C.Q., Wei, Q., Kong, Y.L., Xu, Q.S., Pan, L., Zhu, L.F., Tian, W.H., Jin, Q.Y., Yu, Y.J., Zhang, J.H., 2022b. Ammonium improved cell wall and cell membrane P reutilization and external P uptake in a putrescine and ethylene dependent pathway. Plant Physiol. Biochem. 191, 67-77.
    Zhu, G., Ye, N., Yang, J., Peng, X., Zhang, J., 2011. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J. Exp. Bot. 62, 3907-3916.
    Zhu, G.Q., Qu, L., Xue, H.W., 2024. Casein kinase 1 AELs promote senescence by enhancing ethylene biosynthesis through phosphorylating WRKY22 transcription factor. New Phytol. 244, 116-130.
    Zhu, X.F., Zhang, X.L., Dong, X.Y., Shen, R.F., 2019. Carbon dioxide improves phosphorus nutrition by facilitating the remobilization of phosphorus from the shoot cell wall in rice (Oryza sativa). Front. Plant Sci. 10, 665.
    Zhu, X.F., Zhu, C.Q., Wang, C., Dong, X.Y., Shen, R.F., 2017. Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice. J. Exp. Bot. 68, 753-760.
    Zhu, X.F., Zhu, C.Q., Zhao, X.S., Zheng, S.J., Shen, R.F., 2016. Ethylene is involved in root phosphorus remobilization in rice (Oryza sativa) by regulating cell-wall pectin and enhancing phosphate translocation to shoots. Ann. Bot. 118, 645-653.
    Zou, Y., Liu, Y., Li, W., Cao, Q., Wang, X., Hu, Z., Cai, Q., Lou, L., 2024. Ethylene is the key phytohormone to enhance arsenic resistance in Arabidopsis thaliana. Ecotoxicol. Environ. Saf. 281, 116644.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return