|
Abramzon, Y.A., Fratta, P., Traynor, B.J., Chia, R., 2020. The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front. Neurosci. 14, 42.
|
|
Ahlstedt, B.A., Ganji, R., Raman, M., 2022. The functional importance of VCP to maintaining cellular protein homeostasis. Biochem. Soc. Trans. 50, 1457-1469.
|
|
Ahmad, L., Zhang, S.Y., Casanova, J.L., Sancho-Shimizu, V., 2016. Human TBK1: a gatekeeper of neuroinflammation. Trends Mol. Med. 22, 511-527.
|
|
Ajroud-Driss, S., Fecto, F., Ajroud, K., Lalani, I., Calvo, S.E., Mootha, V.K., Deng, H.X., Siddique, N., Tahmoush, A.J., Heiman-Patterson, T.D., et al., 2014. Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy. Neurogenetics 16, 1-9.
|
|
Akcimen, F., Lopez, E.R., Landers, J.E., Nath, A., Chio, A., Chia, R., Traynor, B.J., 2023. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat. Rev. Genet. 24, 642-658.
|
|
Al-Obeidi, E., Al-Tahan, S., Surampalli, A., Goyal, N., Wang, A.K., Hermann, A., Omizo, M., Smith, C., Mozaffar, T., Kimonis, V., 2017. Genotype-phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy. Clin. Genet. 93, 119-125.
|
|
Al-Saif, A., Al-Mohanna, F., Bohlega, S., 2011. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol. 70, 913-919.
|
|
Alavi, A., Nafissi, S., Rohani, M., Zamani, B., Sedighi, B., Shamshiri, H., Fan, J.B., Ronaghi, M., Elahi, E., 2013. Genetic analysis and SOD1 mutation screening in Iranian amyotrophic lateral sclerosis patients. Neurobiol. Aging 34, 1516.e1-1516.e8.
|
|
Alkam, D., Feldman, E.Z., Singh, A., Kiaei, M., 2016. Profilin1 biology and its mutation, acting in disease. Cell. Mol. Life Sci. 74, 967-981.
|
|
Alsultan, A.A., Waller, R., Heath, P.R., Kirby, J., 2016. The genetics of amyotrophic lateral sclerosis: current insights. Degener. Neurol. Neuromuscular Dis. 6, 49-64.
|
|
Aluri, K.C., Salisbury, J.P., Prehn, J.H.M., Agar, J.N., 2020. Loss of angiogenin function is related to earlier ALS onset and a paradoxical increase in ALS duration. Sci. Rep. 10, 3715.
|
|
Amado, D.A., Davidson, B.L., 2021. Gene therapy for ALS: a review. Mol. Ther. 29, 3345-3358.
|
|
Anderson, C.J., Bredvik, K., Burstein, S.R., Davis, C., Meadows, S.M., Dash, J., Case, L., Milner, T.A., Kawamata, H., Zuberi, A., et al., 2019. ALS/FTD mutant CHCHD10 mice reveal a tissue-specific toxic gain-of-function and mitochondrial stress response. Acta Neuropathol. 138, 103-121.
|
|
Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., Mann, D., Tsuchiya, K., Yoshida, M., Hashizume, Y., et al., 2006. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602-611.
|
|
Armstrong, G.A.B., Drapeau, P., 2013. Loss and gain of FUS function impair neuromuscular synaptic transmission in a genetic model of ALS. Hum. Mol. Genet. 22, 4282-4292.
|
|
Arseni, D., Hasegawa, M., Murzin, A.G., Kametani, F., Arai, M., Yoshida, M., Ryskeldi-Falcon, B., 2021. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601, 139-143.
|
|
Auranen, M., Ylikallio, E., Shcherbii, M., Paetau, A., Kiuru-Enari, S., Toppila, J.P., Tyynismaa, H., 2015. CHCHD10 variant p. (Gly66Val) causes axonal Charcot-Marie-Tooth disease. Neurol. Genet. 1, e1.
|
|
Bagyinszky, E., Hulme, J., An, S.S.A., 2023. Studies of genetic and proteomic risk factors of amyotrophic lateral sclerosis inspire biomarker development and gene therapy. Cells 12, 1948.
|
|
Balendra, R., Isaacs, A.M., 2018. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. 14, 544-558.
|
|
Bannwarth, S., Ait-El-Mkadem, S., Chaussenot, A., Genin, E.C., Lacas-Gervais, S., Fragaki, K., Berg-Alonso, L., Kageyama, Y., Serre, V., Moore, D.G., et al., 2014. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137, 2329-2345.
|
|
Battistini, S., Ricci, C., Giannini, F., Calzavara, S., Greco, G., Del Corona, A., Mancuso, M., Battistini, N., Siciliano, G., Carrera, P., 2010. G41S SOD1 mutation: a common ancestor for six ALS Italian families with an aggressive phenotype. Amyotroph. Lateral. Scler. 11, 210-215.
|
|
Battle, M.A., Maher, V.M., McCormick, J.J., 2003. ST7 is a novel low-density lipoprotein receptor-related protein (LRP) with a cytoplasmic tail that interacts with proteins related to signal transduction pathways. Biochemistry 42, 7270-7282.
|
|
Beaulieu, J.M., Nguyen, M.D., Julien, J.P., 1999. Late onset death of motor neurons in mice overexpressing wild-type peripherin. J. Cell Biol. 147, 531-544.
|
|
Becker, L.A., Huang, B., Bieri, G., Ma, R., Knowles, D.A., Jafar-Nejad, P., Messing, J., Kim, H.J., Soriano, A., Auburger, G., et al., 2017. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367-371.
|
|
Beijer, D., Kim, H.J., Guo, L., O’Donovan, K., Mademan, I., Deconinck, T., Van Schil, K., Fare, C.M., Drake, L.E., Ford, A.F., et al., 2021. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight 6, e148363.
|
|
Benarroch, E.E., 2018. Sigma-1 receptor and amyotrophic lateral sclerosis. Neurology 91, 743-747.
|
|
Benatar, M., Robertson, J., Andersen, P.M., 2025. Amyotrophic lateral sclerosis caused by SOD1 variants: from genetic discovery to disease prevention. Lancet Neurol. 24, 77-86.
|
|
Bercier, V., Hubbard, J.M., Fidelin, K., Duroure, K., Auer, T.O., Revenu, C., Wyart, C., Del Bene, F., 2019. Dynactin1 depletion leads to neuromuscular synapse instability and functional abnormalities. Mol. Neurodegener. 14, 27.
|
|
Bernard-Marissal, N., Medard, J.J., Azzedine, H., Chrast, R., 2015. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain 138, 875-890.
|
|
Bertolin, C., Querin, G., Bozzoni, V., Martinelli, I., De Bortoli, M., Rampazzo, A., Gellera, C., Pegoraro, E., Soraru, G., 2018. New FIG4 gene mutations causing aggressive ALS. Eur. J. Neurol. 25, e41-e42.
|
|
Blair, I.P., Williams, K.L., Warraich, S.T., Durnall, J.C., Thoeng, A.D., Manavis, J., Blumbergs, P.C., Vucic, S., Kiernan, M.C., Nicholson, G.A., 2009. FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. J. Neurol. Neurosurg. Psychiatry 81, 639-645.
|
|
Bonnard, M., 2000. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J. 19, 4976-4985.
|
|
Borgese, N., Iacomino, N., Colombo, S.F., Navone, F., 2021. The link between VAPB loss of function and amyotrophic lateral sclerosis. Cells 10, 1865.
|
|
Branchu, J., Boutry, M., Sourd, L., Depp, M., Leone, C., Corriger, A., Vallucci, M., Esteves, T., Matusiak, R., Dumont, M., et al., 2017. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration. Neurobiol. Dis. 102, 21-37.
|
|
Brenner, D., Muller, K., Wieland, T., Weydt, P., Bohm, S., Lule, D., Hubers, A., Neuwirth, C., Weber, M., Borck, G., et al., 2016. NEK1 mutations in familial amyotrophic lateral sclerosis. Brain 139, e28.
|
|
Brenner, D., Yilmaz, R., Muller, K., Grehl, T., Petri, S., Meyer, T., Grosskreutz, J., Weydt, P., Ruf, W., Neuwirth, C., et al., 2018. Hot-spot KIF5A mutations cause familial ALS. Brain 141, 688-697.
|
|
Brown, R.H., Longo, D.L., Al-Chalabi, A., 2017. Amyotrophic lateral sclerosis. N. Engl. J. Med. 377, 162-172.
|
|
Bruno, C., Sieverding, K., Freischmidt, A., Satoh, T., Walther, P., Mayer, B., Ludolph, A.C., Akira, S., Yilmazer-Hanke, D., Danzer, K.M., et al., 2020. Haploinsufficiency of TANK-binding kinase 1 prepones age-associated neuroinflammatory changes without causing motor neuron degeneration in aged mice. Brain Commun. 2, fcaa133.
|
|
Bucelli, R.C., Arhzaouy, K., Pestronk, A., Pittman, S.K., Rojas, L., Sue, C.M., Evila, A., Hackman, P., Udd, B., Harms, M.B., et al., 2015. SQSTM1 splice site mutation in distal myopathy with rimmed vacuoles. Neurology 85, 665-674.
|
|
Burstein, S.R., Valsecchi, F., Kawamata, H., Bourens, M., Zeng, R., Zuberi, A., Milner, T.A., Cloonan, S.M., Lutz, C., Barrientos, A., et al., 2018. In vitro and in vivo studies of the ALS-FTLD protein CHCHD10 reveal novel mitochondrial topology and protein interactions. Hum. Mol. Genet. 27, 160-177.
|
|
Cadoni, M.P.L., Biggio, M.L., Arru, G., Secchi, G., Orru, N., Clemente, M.G., Sechi, G., Yamoah, A., Tripathi, P., Orru, S., et al., 2020. VAPB ER-aggregates, a possible new biomarker in ALS pathology. Cells 9, 164.
|
|
Cai, H., Lin, X., Xie, C., Laird, F.M., Lai, C., Wen, H., Chiang, H.C., Shim, H., Farah, M.H., Hoke, A., et al., 2005. Loss of ALS2 function is insufficient to trigger motor neuron degeneration in knock-out mice but predisposes neurons to oxidative stress. J. Neurosci. 25, 7567-7574.
|
|
Chakraborty, A., Diwan, A., 2022. Biomarkers and molecular mechanisms of amyotrophic lateral sclerosis. AIMS Neurosci. 9, 423-443.
|
|
Chance, P.F., Rabin, B.A., Ryan, S.G., Ding, Y., Scavina, M., Crain, B., Griffin, J.W., Cornblath, D.R., 1998. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am. J. Hum. Genet. 62, 633-640.
|
|
Chandran, J., Ding, J., Cai, H., 2007. Alsin and the molecular pathways of amyotrophic lateral sclerosis. Mol. Neurobiol. 36, 224-231.
|
|
Chang-Hong, R., Wada, M., Koyama, S., Kimura, H., Arawaka, S., Kawanami, T., Kurita, K., Kadoya, T., Aoki, M., Itoyama, Y., et al., 2005. Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 194, 203-211.
|
|
Charles, P., Camuzat, A., Benammar, N., Sellal, F., Destee, A., Bonnet, A.M., Lesage, S., Le Ber, I., Stevanin, G., Durr, A., et al., 2007. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 69, 1970-1975.
|
|
Chen, H.J., Anagnostou, G., Chai, A., Withers, J., Morris, A., Adhikaree, J., Pennetta, G., de Belleroche, J.S., 2010. Characterization of the properties of a novel mutation in VAPB in familial amyotrophic lateral sclerosis. J. Biol. Chem. 285, 40266-40281.
|
|
Chen, S., Sayana, P., Zhang, X., Le, W., 2013. Genetics of amyotrophic lateral sclerosis: an update. Mol. Neurodegener. 8, 28.
|
|
Chen, Y., zheng, Z.Z., Huang, R., Chen, K., Song, W., Zhao, B., Chen, X., Yang, Y., Yuan, L., Shang, H.F., 2013. PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Neurobiol. Aging 34, 1922.e1-1922.e5.
|
|
Chen, Y.Z., Bennett, C.L., Huynh, H.M., Blair, I.P., Puls, I., Irobi, J., Dierick, I., Abel, A., Kennerson, M.L., Rabin, B.A., et al., 2004. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74, 1128-1135.
|
|
Chia, R., Chio, A., Traynor, B.J., 2018. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 17, 94-102.
|
|
Chio, A., Logroscino, G., Traynor, B.J., Collins, J., Simeone, J.C., Goldstein, L.A., White, L.A., 2013. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41, 118-130.
|
|
Chow, C.Y., Landers, J.E., Bergren, S.K., Sapp, P.C., Grant, A.E., Jones, J.M., Everett, L., Lenk, G.M., McKenna-Yasek, D.M., Weisman, L.S., et al., 2009. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am. J. Hum. Genet. 84, 85-88.
|
|
Chow, C.Y., Zhang, Y., Dowling, J.J., Jin, N., Adamska, M., Shiga, K., Szigeti, K., Shy, M.E., Li, J., Zhang, X., et al., 2007. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448, 68-72.
|
|
Chua, J.P., De Calbiac, H., Kabashi, E., Barmada, S.J., 2021. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 18, 254-282.
|
|
Cicardi, M.E., Hallgren, J.H., Mawrie, D., Krishnamurthy, K., Markandaiah, S.S., Nelson, A.T., Kankate, V., Anderson, E.N., Pasinelli, P., Pandey, U.B., et al., 2023. C9orf72 poly(PR) mediated neurodegeneration is associated with nucleolar stress. iScience 26, 107505.
|
|
Cirulli, E.T., Lasseigne, B.N., Petrovski, S., Sapp, P.C., Dion, P.A., Leblond, C.S., Couthouis, J., Lu, Y.F., Wang, Q., Krueger, B.J., et al., 2015. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436-1441.
|
|
Ciura, S., Lattante, S., Le Ber, I., Latouche, M., Tostivint, H., Brice, A., Kabashi, E., 2013. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann. Neurol. 74, 180-187.
|
|
Ciura, S., Sellier, C., Campanari, M.L., Charlet-Berguerand, N., Kabashi, E., 2016. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway. Autophagy 12, 1406-1408.
|
|
Clarke, J.P., Thibault, P.A., Salapa, H.E., Levin, M.C., 2021. A comprehensive analysis of the role of hnRNP A1 function and dysfunction in the pathogenesis of neurodegenerative disease. Front. Mol. Biosci. 8, 659610.
|
|
Coelho, M.B., Attig, J., Bellora, N., Konig, J., Hallegger, M., Kayikci, M., Eyras, E., Ule, J., Smith, C.W.J., 2015. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB. EMBO J. 34, 653-668.
|
|
Columbres, R.C.A., Chin, Y., Pratti, S., Quinn, C., Gonzalez-Cuyar, L.F., Weiss, M., Quintero-Rivera, F., Kimonis, V., 2023. Novel variants in the VCP gene causing multisystem proteinopathy 1. Genes 14, 676.
|
|
Conte, A., Lattante, S., Zollino, M., Marangi, G., Luigetti, M., Del Grande, A., Servidei, S., Trombetta, F., Sabatelli, M., 2012. P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis. Neuromuscul. Disord. 22, 73-75.
|
|
Cookson, M.R., Cox, L.E., Ferraiuolo, L., Goodall, E.F., Heath, P.R., Higginbottom, A., Mortiboys, H., Hollinger, H.C., Hartley, J.A., Brockington, A., et al., 2010. Mutations in CHMP2B in lower motor neuron predominant myotrophic lateral sclerosis (ALS). PLoS One 5, e9872.
|
|
Corrado, L., Carlomagno, Y., Falasco, L., Mellone, S., Godi, M., Cova, E., Cereda, C., Testa, L., Mazzini, L., D’Alfonso, S., 2011. A novel peripherin gene (PRPH) mutation identified in one sporadic amyotrophic lateral sclerosis patient. Neurobiol. Aging 32, 552.e1-552.e6.
|
|
Couly, S., Khalil, B., Viguier, V., Roussel, J., Maurice, T., Lievens, J.C., 2020. Sigma-1 receptor is a key genetic modulator in amyotrophic lateral sclerosis. Hum. Mol. Genet. 29, 529-540.
|
|
Crivello, M., O'Riordan, S.L., Woods, I., Cannon, S., Halang, L., Coughlan, K.S., Hogg, M.C., Lewandowski, S.A., Prehn, J.H.M., 2018. Pleiotropic activity of systemically delivered angiogenin in the SOD1G93A mouse model. Neuropharmacology 133, 503-511.
|
|
Da Cruz, S., Cleveland, D.W., 2011. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr. Opin. Neurobiol. 21, 904-919.
|
|
Darwich, N.F., Phan, J.M., Kim, B., Suh, E., Papatriantafyllou, J.D., Changolkar, L., Nguyen, A.T., O’Rourke, C.M., He, Z., Porta, S., et al., 2020. Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Science 370, eaay8826.
|
|
DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al., 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245-256.
|
|
Deng, H., Gao, K., Jankovic, J., 2014. The role of FUS gene variants in neurodegenerative diseases. Nat. Rev. Neurol. 10, 337-348.
|
|
Deng, H., Huang, X., Yuan, L., 2016. Molecular genetics of the COL2A1-related disorders. Mutat Res Rev Mutat Res 768, 1-13.
|
|
Deng, H.X., Chen, W., Hong, S.T., Boycott, K.M., Gorrie, G.H., Siddique, N., Yang, Y., Fecto, F., Shi, Y., Zhai, H., et al., 2011. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211-215.
|
|
Deng, J., Yang, M., Chen, Y., Chen, X., Liu, J., Sun, S., Cheng, H., Li, Y., Bigio, E.H., Mesulam, M., et al., 2015. FUS interacts with HSP60 to promote mitochondrial damage. PLoS Genet. 11, e1005357.
|
|
Deng, X., Yuan, L., Jankovic, J., Deng, H., 2023. The role of the PLA2G6 gene in neurodegenerative diseases. Ageing Res. Rev. 89, 101957.
|
|
Deng, Z., Lim, J., Wang, Q., Purtell, K., Wu, S., Palomo, G.M., Tan, H., Manfredi, G., Zhao, Y., Peng, J., et al., 2020. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 16, 917-931.
|
|
Diaper, D.C., Adachi, Y., Sutcliffe, B., Humphrey, D.M., Elliott, C.J.H., Stepto, A., Ludlow, Z.N., Vanden Broeck, L., Callaerts, P., Dermaut, B., et al., 2013. Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes. Hum. Mol. Genet. 22, 1539-1557.
|
|
Dobson-Stone, C., Hallupp, M., Shahheydari, H., Ragagnin, A.M.G., Chatterton, Z., Carew-Jones, F., Shepherd, C.E., Stefen, H., Paric, E., Fath, T., et al., 2020. CYLD is a causative gene for frontotemporal dementia - amyotrophic lateral sclerosis. Brain 143, 783-799.
|
|
Dols-Icardo, O., Nebot, I., Gorostidi, A., Ortega-Cubero, S., Hernandez, I., Rojas-Garcia, R., Garcia-Redondo, A., Povedano, M., Llado, A., Alvarez, V., et al., 2015. Analysis of the CHCHD10 gene in patients with frontotemporal dementia and amyotrophic lateral sclerosis from Spain. Brain 138, e400.
|
|
Domi, T., Schito, P., Sferruzza, G., Russo, T., Pozzi, L., Agosta, F., Carrera, P., Riva, N., Filippi, M., Quattrini, A., et al., 2023. Unveiling the SOD1-mediated ALS phenotype: insights from a comprehensive meta-analysis. J. Neurol. 271, 1342-1354.
|
|
Dormann, D., Rodde, R., Edbauer, D., Bentmann, E., Fischer, I., Hruscha, A., Than, M.E., Mackenzie, I.R.A., Capell, A., Schmid, B., et al., 2010. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 29, 2841-2857.
|
|
Elden, A.C., Kim, H.J., Hart, M.P., Chen-Plotkin, A.S., Johnson, B.S., Fang, X., Armakola, M., Geser, F., Greene, R., Lu, M.M., et al., 2010. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069-1075.
|
|
Fang, T., Je, G., Pacut, P., Keyhanian, K., Gao, J., Ghasemi, M., 2022. Gene therapy in amyotrophic lateral sclerosis. Cells 11, 2066.
|
|
Fecto, F., Yan, J., Vemula, S.P., Liu, E., Yang, Y., Chen, W., Zheng, J.G., Shi, Y., Siddique, N., Arrat, H., et al., 2011. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol 68, 1440-1446.
|
|
Feldman, E.L., Goutman, S.A., Petri, S., Mazzini, L., Savelieff, M.G., Shaw, P.J., Sobue, G., 2022. Amyotrophic lateral sclerosis. Lancet 400, 1363-1380.
|
|
Feng, S.M., Che, C.H., Feng, S.Y., Liu, C.Y., Li, L.Y., Li, Y.X., Huang, H.P., Zou, Z.Y., 2019. Novel mutation in optineurin causing aggressive ALS+/− frontotemporal dementia. Ann. Clin. Transl. Neurol. 6, 2377-2383.
|
|
Fil, D., DeLoach, A., Yadav, S., Alkam, D., MacNicol, M., Singh, A., Compadre, C.M., Goellner, J.J., O’Brien, C.A., Fahmi, T., et al., 2016. Mutant Profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum. Mol. Genet. 26, 686-701.
|
|
Freischmidt, A., Muller, K., Ludolph, A.C., Weishaupt, J.H., Andersen, P.M., 2017. Association of mutations in TBK1 with sporadic and familial amyotrophic lateral sclerosis and frontotemporal dementia. JAMA Neurol. 74, 110-113.
|
|
Freischmidt, A., Wieland, T., Richter, B., Ruf, W., Schaeffer, V., Muller, K., Marroquin, N., Nordin, F., Hubers, A., Weydt, P., et al., 2015. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631-636.
|
|
Furukawa, Y., Fu, R., Deng, H., Siddique, T., O’Halloran, T.V., 2006. Disulfide cross-linked protein represents a significantfraction of ALS-associated Cu, Zn-superoxidedismutase aggregates in spinal cords of model mice. Proc. Natl. Acad. Sci. U. S. A. 103, 7148-7153.
|
|
Gassmann, M., Casagranda, F., Orioli, D., Simon, H., Lai, C., Klein, R., Lemke, G., 1995. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390-394.
|
|
Ghasemi, M., Brown, R.H., 2018. Genetics of amyotrophic lateral sclerosis. Cold Spring Harb. Perspect. Med. 8, a024125.
|
|
Ghazi-Noori, S., Froud, K.E., Mizielinska, S., Powell, C., Smidak, M., Fernandez de Marco, M., O’Malley, C., Farmer, M., Parkinson, N., Fisher, E.M.C., et al., 2012. Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain 135, 819-832.
|
|
Ghezzi, A., Martinelli, I., Carra, S., Mediani, L., Zucchi, E., Simonini, C., Gianferrari, G., Fini, N., Cereda, C., Gellera, C., et al., 2022. Missense mutation in ATXN2 gene (c.2860C > T) in an amyotrophic lateral sclerosis patient with aggressive disease phenotype. Neurol. Sci. 43, 6087-6090.
|
|
Golub, M.S., Germann, S.L., Lloyd, K.C.K., 2004. Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav. Brain Res. 153, 159-170.
|
|
Goutman, S.A., Hardiman, O., Al-Chalabi, A., Chio, A., Savelieff, M.G., Kiernan, M.C., Feldman, E.L., 2022. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 21, 465-479.
|
|
Grassano, M., Brodini, G., De Marco, G., Casale, F., Fuda, G., Salamone, P., Brunetti, M., Sbaiz, L., Gallone, S., Cugnasco, P., et al., 2022. Phenotype analysis of fused in sarcoma mutations in amyotrophic lateral sclerosis. Neurol. Genet. 8, e200011.
|
|
Greenway, M.J., Alexander, M.D., Ennis, S., Traynor, B.J., Corr, B., Frost, E., Green, A., Hardiman, O., 2004. A novel candidate region for ALS on chromosome 14q11.2. Neurology 63, 1936-1938.
|
|
Greenway, M.J., Andersen, P.M., Russ, C., Ennis, S., Cashman, S., Donaghy, C., Patterson, V., Swingler, R., Kieran, D., Prehn, J., et al., 2006. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nat. Genet. 38, 411-413.
|
|
Gros-Louis, F., Lariviere, R., Gowing, G., Laurent, S., Camu, W., Bouchard, J.P., Meininger, V., Rouleau, G.A., Julien, J.P., 2004. A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J. Biol. Chem. 279, 45951-45956.
|
|
Gu, X., Chen, Y., Wei, Q., Cao, B., Ou, R., Yuan, X., Hou, Y., Zhang, L., Liu, H., Chen, X., et al., 2018. Mutation screening of the TIA1 gene in Chinese patients with amyotrophic lateral sclerosis/frontotemporal dementia. Neurobiol. Aging 68, 161.e1-161.e3.
|
|
Gu, X., Chen, Y., Wei, Q., Hou, Y., Cao, B., Zhang, L., Ou, R., Lin, J., Liu, K., Zhao, B., et al., 2021. Rare CYLD variants in Chinese patients with amyotrophic lateral sclerosis. Front. Genet. 12, 740052.
|
|
Haack, T.B., Ignatius, E., Calvo-Garrido, J., Iuso, A., Isohanni, P., Maffezzini, C., Lonnqvist, T., Suomalainen, A., Gorza, M., Kremer, L.S., et al., 2016. Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy. Am. J. Hum. Genet. 99, 735-743.
|
|
Hackman, P., Sarparanta, J., Lehtinen, S., Vihola, A., Evila, A., Jonson, P.H., Luque, H., Kere, J., Screen, M., Chinnery, P.F., et al., 2013. Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann. Neurol. 73, 500-509.
|
|
Hadano, S., Hand, C.K., Osuga, H., Yanagisawa, Y., Otomo, A., Devon, R.S., Miyamoto, N., Showguchi-Miyata, J., Okada, Y., Singaraja, R., et al., 2001. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet. 29, 166-173.
|
|
Han, X., Zhan, F., Yao, Y., Cao, L., Liu, J., Yao, S., 2022. Clinical heterogeneity in a family with flail arm syndrome and review of hnRNPA1-related spectrum. Ann. Clin. Transl. Neurol. 9, 1910-1917.
|
|
Hand, C.K., Khoris, J., Salachas, F., Gros-Louis, F., Lopes, A.A.S., Mayeux-Portas, V., Brown, R.H., Meininger, V., Camu, W., Rouleau, G.A., 2002. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am. J. Hum. Genet. 70, 251-256.
|
|
Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E.M., Logroscino, G., Robberecht, W., Shaw, P.J., Simmons, Z., van den Berg, L.H., 2017. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 3, 17071.
|
|
Hentati, A., Ouahchi, K., Pericak-Vance, M.A., Nijhawan, D., Ahmad, A., Yang, Y., Rimmler, J., Hung, W.Y., Schlotter, B., Ahmed, A., et al., 1998. Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers. Neurogenetics 2, 55-60.
|
|
Hirano, M., Quinzii, C.M., Mitsumoto, H., Hays, A.P., Roberts, J.K., Richard, P., Rowland, L.P., 2010. Senataxin mutations and amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler. 12, 223-227.
|
|
Ho, P.C., Hsieh, T.C., Tsai, K.J., 2024. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: from pathomechanisms to therapeutic strategies. Ageing Res. Rev. 100, 102441.
|
|
Hogan, A.L., Don, E.K., Rayner, S.L., Lee, A., Laird, A.S., Watchon, M., Winnick, C., Tarr, I.S., Morsch, M., Fifita, J.A., et al., 2017. Expression of ALS/FTD-linked mutant CCNF in zebrafish leads to increased cell death in the spinal cord and an aberrant motor phenotype. Hum. Mol. Genet. 26, 2616-2626.
|
|
Holtes, L.K., de Bruijn, S.E., Cremers, F.P.M., Roosing, S., 2025. Dual inheritance patterns: a spectrum of non-syndromic inherited retinal disease phenotypes with varying molecular mechanisms. Prog. Retin. Eye Res. 104, 101308.
|
|
Hosseini Faradonbeh, S.M., Seyedalipour, B., Keivan Behjou, N., Rezaei, K., Baziyar, P., Hosseinkhani, S., 2025. Structural insights into SOD1: from in silico and molecular dynamics to experimental analyses of ALS-associated E49K and R115G mutants. Front. Mol. Biosci. 12, 1532375.
|
|
Huai, J., Zhang, Z., 2019. Structural properties and interaction partners of familial ALS-associated SOD1 mutants. Front. Neurol. 10, 527.
|
|
Iacoangeli, A., Al Khleifat, A., Jones, A.R., Sproviero, W., Shatunov, A., Opie-Martin, S., Morrison, K.E., Shaw, P.J., Shaw, C.E., Fogh, I., et al., 2019. C9orf72 intermediate expansions of 24-30 repeats are associated with ALS. Acta Neuropathol. Commun. 7, 115.
|
|
Idera, A., Sharkey, L.M., Kurauchi, Y., Kadoyama, K., Paulson, H.L., Katsuki, H., Seki, T., 2023. Wild-type and pathogenic forms of ubiquilin 2 differentially modulate components of the autophagy-lysosome pathways. J. Pharmacol. Sci. 152, 182-192.
|
|
Ingre, C., Landers, J.E., Rizik, N., Volk, A.E., Akimoto, C., Birve, A., Hubers, A., Keagle, P.J., Piotrowska, K., Press, R., et al., 2013. A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol. Aging 34, 1708.e1-1708.e6.
|
|
Ishiura, H., Shibata, S., Yoshimura, J., Suzuki, Y., Qu, W., Doi, K., Almansour, M.A., Kikuchi, J.K., Taira, M., Mitsui, J., et al., 2019. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat. Genet. 51, 1222-1232.
|
|
Ito, Y., Ofengeim, D., Najafov, A., Das, S., Saberi, S., Li, Y., Hitomi, J., Zhu, H., Chen, H., Mayo, L., et al., 2016. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353, 603-608.
|
|
Jawdat, O., Statland, J.M., Barohn, R.J., Katz, J.S., Dimachkie, M.M., 2015. Amyotrophic lateral sclerosis regional variants (brachial amyotrophic diplegia, leg amyotrophic diplegia, and isolated bulbar amyotrophic lateral sclerosis). Neurol. Clin. 33, 775-785.
|
|
Ji, A.L., Zhang, X., Chen, W.W., Huang, W.J., 2017. Genetics insight into the amyotrophic lateral sclerosis/frontotemporal dementia spectrum. J. Med. Genet. 54, 145-154.
|
|
Jiang, J., Zhu, Q., Gendron, T.F., Saberi, S., McAlonis-Downes, M., Seelman, A., Stauffer, J.E., Jafar-nejad, P., Drenner, K., Schulte, D., et al., 2016. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535-550.
|
|
Jiao, B., Sun, Q., Yuan, Z., Wang, J., Zhou, L., Yan, X., Tang, B., Shen, L., 2018. Rare TBK1 variants in patients with frontotemporal dementia and amyotrophic lateral sclerosis in a Chinese cohort. Transl. Neurodegener. 7, 31.
|
|
Jih, K.Y., Chou, Y.T., Tsai, P.C., Liao, Y.C., Lee, Y.C., 2021. Analysis of NOTCH2NLC GGC repeat expansion in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 108, 210-212.
|
|
Johnson, J.O., Chia, R., Miller, D.E., Li, R., Kumaran, R., Abramzon, Y., Alahmady, N., Renton, A.E., Topp, S.D., Gibbs, J.R., et al., 2021. Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurol. 78, 1236-1248.
|
|
Johnson, J.O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V.M., Trojanowski, J.Q., Gibbs, J.R., Brunetti, M., Gronka, S., Wuu, J., et al., 2010. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857-864.
|
|
Johnson, J.O., Pioro, E.P., Boehringer, A., Chia, R., Feit, H., Renton, A.E., Pliner, H.A., Abramzon, Y., Marangi, G., Winborn, B.J., et al., 2014. Mutations in the matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 17, 664-666.
|
|
Jonsson, P.A., Graffmo, K.S., Brannstrom, T., Nilsson, P., Andersen, P.M., Marklund, S.L., 2006. Motor neuron disease in mice expressing the wild type-like D90A mutant superoxide dismutase-1. J. Neuropathol. Exp. Neurol. 65, 1126-1136.
|
|
Kabashi, E., El Oussini, H., Bercier, V., Gros-Louis, F., Valdmanis, P.N., McDearmid, J., Mejier, I.A., Dion, P.A., Dupre, N., Hollinger, D., et al., 2013. Investigating the contribution of VAPB/ALS8 loss of function in amyotrophic lateral sclerosis. Hum. Mol. Genet. 22, 2350-2360.
|
|
Kaur, S.J., McKeown, S.R., Rashid, S., 2016. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577, 109-118.
|
|
Kenna, K.P., van Doormaal, P.T.C., Dekker, A.M., Ticozzi, N., Kenna, B.J., Diekstra, F.P., van Rheenen, W., van Eijk, K.R., Jones, A.R., Keagle, P., et al., 2016. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 48, 1037-1042.
|
|
Kiaei, M., Balasubramaniam, M., Govind Kumar, V., Shmookler Reis, R.J., Moradi, M., Varughese, K.I., 2018. ALS-causing mutations in profilin-1 alter its conformational dynamics: a computational approach to explain propensity for aggregation. Sci. Rep. 8, 13102.
|
|
Kieran, D., Sebastia, J., Greenway, M.J., King, M.A., Connaughton, D., Concannon, C.G., Fenner, B., Hardiman, O., Prehn, J.H.M., 2008. Control of motoneuron survival by angiogenin. J. Neurosci. 28, 14056-14061.
|
|
Kim, G., Gautier, O., Tassoni-Tsuchida, E., Ma, X.R., Gitler, A.D., 2020. ALS genetics: gains, losses, and implications for future therapies. Neuron 108, 822-842.
|
|
Kim, H.J., Kim, N.C., Wang, Y.-D., Scarborough, E.A., Moore, J., Diaz, Z., MacLea, K.S., Freibaum, B., Li, S., Molliex, A., et al., 2013. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467-473.
|
|
Kino, Y., Washizu, C., Kurosawa, M., Yamada, M., Miyazaki, H., Akagi, T., Hashikawa, T., Doi, H., Takumi, T., Hicks, G.G., et al., 2015. FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 3, 24.
|
|
Kirola, L., Mukherjee, A., Mutsuddi, M., 2022. Recent updates on the genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Mol. Neurobiol. 59, 5673-5694.
|
|
Klim, J.R., Pintacuda, G., Nash, L.A., Guerra San Juan, I., Eggan, K., 2021. Connecting TDP-43 pathology with neuropathy. Trends Neurosci. 44, 424-440.
|
|
Kolbel, H., Kraft, F., Hentschel, A., Czech, A., Gangfuss, A., Mohassel, P., Nguyen, C., Stenzel, W., Schara-Schmidt, U., Preusse, C., et al., 2022. New insights into the neuromyogenic spectrum of a gain of function mutation in SPTLC1. Genes 13, 893.
|
|
Korb, M.K., Kimonis, V.E., Mozaffar, T., 2020. Multisystem proteinopathy: where myopathy and motor neuron disease converge. Muscle Nerve 63, 442-454.
|
|
Korobeynikov, V.A., Lyashchenko, A.K., Blanco-Redondo, B., Jafar-Nejad, P., Shneider, N.A., 2022. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat. Med. 28, 104-116.
|
|
Kraemer, B.C., Schuck, T., Wheeler, J.M., Robinson, L.C., Trojanowski, J.Q., Lee, V.M.Y., Schellenberg, G.D., 2010. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol. 119, 409-419.
|
|
Krasniak, C.S., Ahmad, S.T., 2016. The role of CHMP2BIntron5 in autophagy and frontotemporal dementia. Brain Res. 1649, 151-157.
|
|
Kume, K., Kurashige, T., Muguruma, K., Morino, H., Tada, Y., Kikumoto, M., Miyamoto, T., Akutsu, S.N., Matsuda, Y., Matsuura, S., et al., 2023. CGG repeat expansion in LRP12 in amyotrophic lateral sclerosis. Am. J. Hum. Genet. 110, 1086-1097.
|
|
Kwiatkowski, T.J., Bosco, D.A., LeClerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T., et al., 2009. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205-1208.
|
|
Lai, C., Xie, C., Shim, H., Chandran, J., Howell, B.W., Cai, H., 2009. Regulation of endosomal motility and degradation by amyotrophic lateral sclerosis 2/alsin. Mol. Brain 2, 23.
|
|
Lanznaster, D., Veyrat-Durebex, C., Vourc’h, P., Andres, C.R., Blasco, H., Corcia, P., 2020. Metabolomics: a tool to understand the impact of genetic mutations in amyotrophic lateral sclerosis. Genes 11, 537.
|
|
Lastres-Becker, I., Brodesser, S., Lutjohann, D., Azizov, M., Buchmann, J., Hintermann, E., Sandhoff, K., Schurmann, A., Nowock, J., Auburger, G., 2008. Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice. Hum. Mol. Genet. 17, 1465-1481.
|
|
Lattante, S., de Calbiac, H., Le Ber, I., Brice, A., Ciura, S., Kabashi, E., 2015. Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD. Hum. Mol. Genet. 24, 1682-1690.
|
|
Laurin, N., Brown, J.P., Morissette, J., Raymond, V., 2002. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am. J. Hum. Genet. 70, 1582-1588.
|
|
Layalle, S., They, L., Ourghani, S., Raoul, C., Soustelle, L., 2021. Amyotrophic lateral sclerosis genes in drosophila melanogaster. Int. J. Mol. Sci. 22, 904.
|
|
Lehky, T., Grunseich, C., 2021. Juvenile amyotrophic lateral sclerosis: a review. Genes (Basel) 12, 1935.
|
|
Lehmer, C., Schludi, M.H., Ransom, L., Greiling, J., Junghanel, M., Exner, N., Riemenschneider, H., van der Zee, J., Van Broeckhoven, C., Weydt, P., et al., 2018. A novel CHCHD10 mutation implicates a Mia40-dependent mitochondrial import deficit in ALS. EMBO Mol. Med. 10, e8558.
|
|
Lenk, G.M., Meisler, M.H., 2022. Chloroquine corrects enlarged lysosomes in FIG4 null cells and reduces neurodegeneration in Fig4 null mice. Mol. Genet. Metab. 137, 382-387.
|
|
Li, H., Yuan, L., Yang, H., Guo, Y., Zheng, W., Fan, K., Deng, S., Gong, L., Xu, H., Yang, Z., et al., 2023. Analysis of SOD1 variants in Chinese patients with familial amyotrophic lateral sclerosis. QJM. 116, 365-374.
|
|
Li, H.F., Wu, Z.Y., 2016. Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl. Neurodegener. 5, 3.
|
|
Li, Q., Spencer, N.Y., Pantazis, N.J., Engelhardt, J.F., 2011. Alsin and SOD1G93A proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity. J. Biol. Chem. 286, 40151-40162.
|
|
Li, W., Gao, H., Dong, X., Zheng, D., 2020. SQSTM1 variant in disorders of the frontotemporal dementia-amyotrophic lateral sclerosis spectrum: identification of a novel heterozygous variant and a review of the literature. J. Neurol. 268, 1351-1357.
|
|
Li, X., Hu, Z., Liu, L., Xie, Y., Zhan, Y., Zi, X., Wang, J., Wu, L., Xia, K., Tang, B., et al., 2015. A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy. Neurology 84, 2430-2437.
|
|
Li, Z., Kabir, I., Tietelman, G., Huan, C., Fan, J., Worgall, T., Jiang, X.C., 2018. Sphingolipid de novo biosynthesis is essential for intestine cell survival and barrier function. Cell Death Dis. 9, 173.
|
|
Lin, F., Lin, W., Zhu, C., Lin, J., Zhu, J., Li, X.-Y., Wang, Z., Wang, C., Huang, H., 2021. Sequencing of neurofilament genes identified NEFH Ser787Arg as a novel risk variant of sporadic amyotrophic lateral sclerosis in Chinese subjects. BMC Med. Genomics 14, 222.
|
|
Lin, Y.C., Kumar, M.S., Ramesh, N., Anderson, E.N., Nguyen, A.T., Kim, B., Cheung, S., McDonough, J.A., Skarnes, W.C., Lopez Gonzalez, R., et al., 2021. Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nat. Neurosci. 24, 1077-1088.
|
|
Liu, X., He, J., Yu, W., Fan, D., 2022. A de novo c.113 T > C: p.L38R mutation of SPTLC1: case report of a girl with sporadic juvenile amyotrophic lateral sclerosis. Amyotroph Lateral Scler. Frontotemporal Degener. 23, 634-637.
|
|
Liu, X., Wu, C., He, J., Zhang, N., Fan, D., 2019. Two rare variants of the ANXA11 gene identified in Chinese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 74, 235.e9-235.e12.
|
|
Liu, Y.T., Laura, M., Hersheson, J., Horga, A., Jaunmuktane, Z., Brandner, S., Pittman, A., Hughes, D., Polke, J.M., Sweeney, M.G., et al., 2014. Extended phenotypic spectrum of KIF5A mutations. Neurology 83, 612-619.
|
|
Lombardi, M., Corrado, L., Piola, B., Comi, C., Cantello, R., D'Alfonso, S., Mazzini, L., De Marchi, F., 2023. Variability in clinical phenotype in TARDBP mutations: amyotrophic lateral sclerosis case description and literature review. Genes 14, 2039.
|
|
Luigetti, M., Lattante, S., Zollino, M., Conte, A., Marangi, G., Del Grande, A., Sabatelli, M., 2011. SOD1 G93D sporadic amyotrophic lateral sclerosis (SALS) patient with rapid progression and concomitant novel ANG variant. Neurobiol. Aging 32, 1924.e15-1924.e18.
|
|
Lye, Y.S., Chen, Y.R., 2022. TAR DNA-binding protein 43 oligomers in physiology and pathology. IUBMB Life 74, 794-811.
|
|
Ma, M.T., Chen, D.H., Raskind, W.H., Bird, T.D., 2020. Mutations in the SIGMAR1 gene cause a distal hereditary motor neuropathy phenotype mimicking ALS: report of two novel variants. Neuromuscul. Disord. 30, 572-575.
|
|
Mackenzie, I.R., Nicholson, A.M., Sarkar, M., Messing, J., Purice, M.D., Pottier, C., Annu, K., Baker, M., Perkerson, R.B., Kurti, A., et al., 2017. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95, 808-816.
|
|
Manini, A., Gagliardi, D., Meneri, M., Antognozzi, S., Del Bo, R., Comi, G.P., Corti, S., Ronchi, D., 2023. NOTCH2NLC GGC repeats are not expanded in Italian amyotrophic lateral sclerosis patients. Sci. Rep. 13, 3187.
|
|
Marangi, G., Traynor, B.J., 2015. Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges. Brain Res. 1607, 75-93.
|
|
Marin-Rubio, J.L., Raote, I., Inns, J., Dobson-Stone, C., Rajan, N., 2023. CYLD in health and disease. Dis. Model. Mech. 16, 050093.
|
|
Marin, B., Boumediene, F., Logroscino, G., Couratier, P., Babron, M.C., Leutenegger, A.L., Copetti, M., Preux, P.M., Beghi, E., 2017. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int. J. Epidemiol. 46, 57-74.
|
|
Martier, R., Konstantinova, P., 2020. Gene therapy for neurodegenerative diseases: slowing down the ticking clock. Front. Neurosci. 14, 580179.
|
|
Maruyama, H., Morino, H., Ito, H., Izumi, Y., Kato, H., Watanabe, Y., Kinoshita, Y., Kamada, M., Nodera, H., Suzuki, H., et al., 2010. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223-226.
|
|
Masrori, P., Van Damme, P., 2020. Amyotrophic lateral sclerosis: a clinical review. Eur. J. Neurol. 27, 1918-1929.
|
|
Mathis, S., Goizet, C., Soulages, A., Vallat, J.M., Masson, G.L., 2019. Genetics of amyotrophic lateral sclerosis: a review. J. Neurol. Sci. 399, 217-226.
|
|
McCann, E.P., Henden, L., Fifita, J.A., Zhang, K.Y., Grima, N., Bauer, D.C., Chan Moi Fat, S., Twine, N.A., Pamphlett, R., Kiernan, M.C., et al., 2020. Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J. Med. Genet. 58, 87-95.
|
|
Mejzini, R., Flynn, L.L., Pitout, I.L., Fletcher, S., Wilton, S.D., Akkari, P.A., 2019. ALS genetics, mechanisms, and therapeutics: where are we now? Front. Neurosci. 13, 1310.
|
|
Miceli, M., Exertier, C., Cavaglia, M., Gugole, E., Boccardo, M., Casaluci, R.R., Ceccarelli, N., De Maio, A., Vallone, B., Deriu, M.A., 2022. ALS2-related motor neuron diseases: from symptoms to molecules. Biology 11, 77.
|
|
Millecamps, S., Salachas, F., Cazeneuve, C., Gordon, P., Bricka, B., Camuzat, A., Guillot-Noel, L., Russaouen, O., Bruneteau, G., Pradat, P.F., et al., 2010. SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J. Med. Genet. 47, 554-560.
|
|
Mironova, Y.A., Lin, J.P., Kalinski, A.L., Huffman, L.D., Lenk, G.M., Havton, L.A., Meisler, M.H., Giger, R.J., 2018. Protective role of the lipid phosphatase Fig4 in the adult nervous system. Hum. Mol. Genet. 27, 2443-2453.
|
|
Mitchell, J.C., McGoldrick, P., Vance, C., Hortobagyi, T., Sreedharan, J., Rogelj, B., Tudor, E.L., Smith, B.N., Klasen, C., Miller, C.C.J., et al., 2012. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol. 125, 273-288.
|
|
Mizielinska, S., Hautbergue, G.M., Gendron, T.F., van Blitterswijk, M., Hardiman, O., Ravits, J., Isaacs, A.M., Rademakers, R., 2025. Amyotrophic lateral sclerosis caused by hexanucleotide repeat expansions in C9orf72: from genetics to therapeutics. Lancet Neurol. 24, 261-274.
|
|
Moens, T.G., Da Cruz, S., Neumann, M., Shelkovnikova, T.A., Shneider, N.A., Van Den Bosch, L., 2025. Amyotrophic lateral sclerosis caused by FUS mutations: advances with broad implications. Lancet Neurol. 24, 166-178.
|
|
Mohassel, P., Donkervoort, S., Lone, M.A., Nalls, M., Gable, K., Gupta, S.D., Foley, A.R., Hu, Y., Saute, J.A.M., Moreira, A.L., et al., 2021. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat. Med. 27, 1197-1204.
|
|
Morello, G., Salomone, S., D’Agata, V., Conforti, F.L., Cavallaro, S., 2020. From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis. Front. Neurosci. 14, 577755.
|
|
Ms, S., Banerjee, S., D’Mello, S.R., Dastidar, S.G., 2025. Amyotrophic lateral sclerosis: focus on cytoplasmic trafficking and proteostasis. Mol. Neurobiol. https://doi.org/10.1007/s12035-025-04831-7.
|
|
Munch, C., Sedlmeier, R., Meyer, T., Homberg, V., Sperfeld, A.D., Kurt, A., Prudlo, J., Peraus, G., Hanemann, C.O., Stumm, G., et al., 2004. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63, 724-726.
|
|
Nachreiner, T., Esser, M., Tenten, V., Troost, D., Weis, J., Kruttgen, A., 2010. Novel splice variants of the amyotrophic lateral sclerosis-associated gene VAPB expressed in human tissues. Biochem. Biophys. Res. Commun. 394, 703-708.
|
|
Nahm, M., Lim, S.M., Kim, Y.E., Park, J., Noh, M.Y., Lee, S., Roh, J.E., Hwang, S.M., Park, C.K., Kim, Y.H., et al., 2020. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci. Transl. Med. 12, eaax3993.
|
|
Nakamura, R., Tohnai, G., Atsuta, N., Nakatochi, M., Hayashi, N., Watanabe, H., Yokoi, D., Watanabe, H., Katsuno, M., Izumi, Y., et al., 2021. Genetic and functional analysis of KIF5A variants in Japanese patients with sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 97, 147.e11-147.e17.
|
|
Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M., et al., 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133.
|
|
Nguyen, H.P., Van Broeckhoven, C., van der Zee, J., 2018. ALS genes in the genomic era and their implications for FTD. Trends Genet. 34, 404-423.
|
|
Nguyen, L., 2024. Updates on disease mechanisms and therapeutics for amyotrophic lateral sclerosis. Cells 13, 888.
|
|
Nicolas, A., Kenna, K.P., Renton, A.E., Ticozzi, N., Faghri, F., Chia, R., Dominov, J.A., Kenna, B.J., Nalls, M.A., Keagle, P., et al., 2018. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97, 1267-1288.
|
|
Nijs, M., Van Damme, P., 2024. The genetics of amyotrophic lateral sclerosis. Current Opinion in Neurology 37, 560-569.
|
|
Nishimura, A.L., 2004. A novel locus for late onset amyotrophic lateral sclerosis/motor neurone disease variant at 20q13. J. Med. Genet. 41, 315-320.
|
|
Nishimura, A.L., Mitne-Neto, M., Silva, H.C.A., Richieri-Costa, A., Middleton, S., Cascio, D., Kok, F., Oliveira, J.R.M., Gillingwater, T., Webb, J., et al., 2004. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822-831.
|
|
Nowicka, N., Juranek, J., Juranek, J.K., Wojtkiewicz, J., 2019. Risk factors and emerging therapies in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 20, 2616.
|
|
O’Rourke, J.G., Bogdanik, L., Yanez, A., Lall, D., Wolf, A.J., Muhammad, A.K.M.G., Ho, R., Carmona, S., Vit, J.P., Zarrow, J., et al., 2016. C9orf72 is required for proper macrophage and microglial function in mice. Science 351, 1324-1329.
|
|
Orlacchio, A., Babalini, C., Borreca, A., Patrono, C., Massa, R., Basaran, S., Munhoz, R.P., Rogaeva, E.A., St George-Hyslop, P.H., Bernardi, G., et al., 2010. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 133, 591-598.
|
|
Osmanovic, A., Rangnau, I., Kosfeld, A., Abdulla, S., Janssen, C., Auber, B., Raab, P., Preller, M., Petri, S., Weber, R.G., 2017. FIG4 variants in central European patients with amyotrophic lateral sclerosis: a whole-exome and targeted sequencing study. Eur. J. Hum. Genet. 25, 324-331.
|
|
Ostrowski, L., Hall, A., Mekhail, K., 2017. Ataxin-2: from RNA control to human health and disease. Genes 8, 157.
|
|
Pant, D.C., Parameswaran, J., Rao, L., Loss, I., Chilukuri, G., Parlato, R., Shi, L., Glass, J.D., Bassell, G.J., Koch, P., et al., 2022. ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain-of-function. EMBO Rep. 23, e54234.
|
|
Pardo, C.A., Xu, Z., Borchelt, D.R., Price, D.L., Sisodia, S.S., Cleveland, D.W., 1995. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc. Natl. Acad. Sci. U. S. A. 92, 954-958.
|
|
Parkinson, N., Ince, P.G., Smith, M.O., Highley, R., Skibinski, G., Andersen, P.M., Morrison, K.E., Pall, H.S., Hardiman, O., Collinge, J., et al., 2006. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67, 1074-1077.
|
|
Pasinelli, P., Brown, R.H., 2006. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710-723.
|
|
Penke, B., Fulop, L., Szucs, M., Frecska, E., 2017. The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Curr. Neuropharmacol. 16, 97-116.
|
|
Penttila, S., Jokela, M., Bouquin, H., Saukkonen, A.M., Toivanen, J., Udd, B., 2014. Late onset spinal motor neuronopathy is caused by mutation in CHCHD10. Ann. Neurol. 77, 163-172.
|
|
Perez-Branguli, F., Mishra, H.K., Prots, I., Havlicek, S., Kohl, Z., Saul, D., Rummel, C., Dorca-Arevalo, J., Regensburger, M., Graef, D., et al., 2014. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum. Mol. Genet. 23, 4859-4874.
|
|
Pozner, T., Regensburger, M., Engelhorn, T., Winkler, J., Winner, B., 2020. Janus-faced spatacsin (SPG11): involvement in neurodevelopment and multisystem neurodegeneration. Brain 143, 2369-2379.
|
|
Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A., Patel, B.K., 2019. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 12, 25.
|
|
Consortium, P.M.A.S., 2018. CHCHD10 variants in amyotrophic lateral sclerosis: where is the evidence? Ann. Neurol. 84, 110-116.
|
|
Ramesh Babu, J., Lamar Seibenhener, M., Peng, J., Strom, A.L., Kemppainen, R., Cox, N., Zhu, H., Wooten, M.C., Diaz-Meco, M.T., Moscat, J., et al., 2008. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J. Neurochem. 106, 107-120.
|
|
Reaume, A.G., Elliott, J.L., Hoffman, E.K., Kowall, N.W., Ferrante, R.J., Siwek, D.R., Wilcox, H.M., Flood, D.G., Beal, M.F., Brown, R.H., et al., 1996. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 13, 43-47.
|
|
Renaud, L., Picher-Martel, V., Codron, P., Julien, J.P., 2019. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol. Commun. 7, 103.
|
|
Renton, A.E., Chio, A., Traynor, B.J., 2013. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17-23.
|
|
Renton, A.E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al., 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257-268.
|
|
Rezaie, T., Child, A., Hitchings, R., Brice, G., Miller, L., Coca-Prados, M., Heon, E., Krupin, T., Ritch, R., Kreutzer, D., et al., 2002. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295, 1077-1079.
|
|
Richard, P., Feng, S., Tsai, Y.L., Li, W., Rinchetti, P., Muhith, U., Irizarry-Cole, J., Stolz, K., Sanz, L.A., Hartono, S., et al., 2020. SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy 17, 1889-1906.
|
|
Riva, N., Pozzi, L., Russo, T., Pipitone, G.B., Schito, P., Domi, T., Agosta, F., Quattrini, A., Carrera, P., Filippi, M., 2022. NEK1 variants in a cohort of Italian patients with amyotrophic lateral sclerosis. Front. Neurosci. 16, 833051.
|
|
Romano, R., Del Fiore, V.S., Bucci, C., 2022. Role of the intermediate filament protein peripherin in health and disease. Int. J. Mol. Sci. 23, 15416.
|
|
Root, J., Merino, P., Nuckols, A., Johnson, M., Kukar, T., 2021. Lysosome dysfunction as a cause of neurodegenerative diseases: lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol. Dis. 154, 105360.
|
|
Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H.X., et al., 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62.
|
|
Rowland, L.P., 2001. How amyotrophic lateral sclerosis got its name. Arch. Neurol. 58, 512-515.
|
|
Ruffo, P., Traynor, B.J., Conforti, F.L., 2025. Advancements in genetic research and RNA therapy strategies for amyotrophic lateral sclerosis (ALS): current progress and future prospects. J. Neurol. 272, 233.
|
|
Saez-Atienzar, S., Bandres-Ciga, S., Langston, R.G., Kim, J.J., Choi, S.W., Reynolds, R.H., Abramzon, Y., Dewan, R., Ahmed, S., Landers, J.E., et al., 2021. Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Sci. Adv. 7, eabd9036.
|
|
Sapp, P.C., Hosler, B.A., McKenna-Yasek, D., Chin, W., Gann, A., Genise, H., Gorenstein, J., Huang, M., Sailer, W., Scheffler, M., et al., 2003. Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am. J. Hum. Genet. 73, 397-403.
|
|
Sasayama, H., Shimamura, M., Tokuda, T., Azuma, Y., Yoshida, T., Mizuno, T., Nakagawa, M., Fujikake, N., Nagai, Y., Yamaguchi, M., 2012. Knockdown of the drosophila fused in sarcoma (FUS) homologue causes deficient locomotive behavior and shortening of motoneuron terminal branches. PLoS ONE 7, e39483.
|
|
Scarian, E., Fiamingo, G., Diamanti, L., Palmieri, I., Gagliardi, S., Pansarasa, O., 2022. The role of VCP mutations in the spectrum of amyotrophic lateral sclerosis-frontotemporal dementia. Front. Neurol. 13, 841394.
|
|
Senderek, J., Garvey, S.M., Krieger, M., Guergueltcheva, V., Urtizberea, A., Roos, A., Elbracht, M., Stendel, C., Tournev, I., Mihailova, V., et al., 2009. Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. Am. J. Hum. Genet. 84, 511-518.
|
|
Sephton, C.F., Good, S.K., Atkin, S., Dewey, C.M., Mayer, P., Herz, J., Yu, G., 2010. TDP-43 is a developmentally regulated protein essential for early embryonic development. J. Biol. Chem. 285, 6826-6834.
|
|
Sharma, R., Khan, Z., Mehan, S., Das Gupta, G., Narula, A.S., 2024. Unraveling the multifaceted insights into amyotrophic lateral sclerosis: genetic underpinnings, pathogenesis, and therapeutic horizons. Mutat. Res. Rev. Mutat. Res. 794, 108518.
|
|
Shepheard, S.R., Parker, M.D., Cooper-Knock, J., Verber, N.S., Tuddenham, L., Heath, P., Beauchamp, N., Place, E., Sollars, E.S.A., Turner, M.R., et al., 2021. Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 92, 510-518.
|
|
Siddique, T., Figlewigz, D.A., Pericak-Vance, M.A., Haines, J.L., Rouleau, G., Jeffers, A.J., Sapp, P., Hung, W.Y., Bebout, J., McKenna-Yasek, D., et al., 1991. Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity. N. Engl. J. Med. 324, 1381-1384.
|
|
Skibinski, G., Parkinson, N.J., Brown, J.M., Chakrabarti, L., Lloyd, S.L., Hummerich, H., Nielsen, J.E., Hodges, J.R., Spillantini, M.G., Thusgaard, T., et al., 2005. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806-808.
|
|
Smeyers, J., Banchi, E.G., Latouche, M., 2021. C9ORF72: what it is, what it does, and why it matters. Front. Cell. Neurosci. 15, 661447.
|
|
Smith, B.N., Ticozzi, N., Fallini, C., Gkazi, A.S., Topp, S., Kenna, K.P., Scotter, E.L., Kost, J., Keagle, P., Miller, J.W., et al., 2014. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84, 324-331.
|
|
Smith, B.N., Topp, S.D., Fallini, C., Shibata, H., Chen, H.J., Troakes, C., King, A., Ticozzi, N., Kenna, K.P., Soragia-Gkazi, A., et al., 2017. Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci. Transl. Med. 9, eaad9157.
|
|
Smith, B.N., Vance, C., Scotter, E.L., Troakes, C., Wong, C.H., Topp, S., Maekawa, S., King, A., Mitchell, J.C., Lund, K., et al., 2015. Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol. Aging 36, 1602.e17-1602.e27.
|
|
Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E., et al., 2008. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672.
|
|
Suk, T.R., Rousseaux, M.W.C., 2020. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener. 15, 45.
|
|
Sun, L., Cheng, B., Zhou, Y., Fan, Y., Li, W., Qiu, Q., Fang, Y., Xiao, S., Zheng, H., Li, X., 2020. ErbB4 mutation that decreased NRG1-ErbB4 signaling involved in the pathogenesis of amyotrophic lateral sclerosis/frontotemporal dementia. J. Alzheimers Dis. 74, 535-544.
|
|
Sun, Y.M., Dong, Y., Wang, J., Lu, J.H., Chen, Y., Wu, J.J., 2017. A novel mutation of VAPB in one Chinese familial amyotrophic lateral sclerosis pedigree and its clinical characteristics. J. Neurol. 264, 2387-2393.
|
|
Suzuki, N., Akiyama, T., Warita, H., Aoki, M., 2020. Omics approach to axonal dysfunction of motor neurons in amyotrophic lateral sclerosis (ALS). Front. Neurosci. 14, 194.
|
|
Swinnen, B., Robberecht, W., 2014. The phenotypic variability of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 10, 661-670.
|
|
Takahashi, Y., Fukuda, Y., Yoshimura, J., Toyoda, A., Kurppa, K., Moritoyo, H., Belzil, V.V., Dion, P.A., Higasa, K., Doi, K., et al., 2013. ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. Am. J. Hum. Genet. 93, 900-905.
|
|
Taylor, J.P., Brown, R.H., Cleveland, D.W., 2016. Decoding ALS: from genes to mechanism. Nature 539, 197-206.
|
|
Teyssou, E., Muratet, F., Amador, M.D.M., Ferrien, M., Lautrette, G., Machat, S., Boillee, S., Larmonier, T., Saker, S., Leguern, E., et al., 2021. Genetic screening of ANXA11 revealed novel mutations linked to amyotrophic lateral sclerosis. Neurobiol. Aging 99, 102.e11-102.e20.
|
|
Theunissen, F., Anderton, R.S., Mastaglia, F.L., James, I., Bedlack, R., Akkari, P.A., 2022. Intronic NEFH variant is associated with reduced risk for sporadic ALS and later age of disease onset. Sci. Rep. 12, 14739.
|
|
Todd, T.W., Petrucelli, L., 2022. Modelling amyotrophic lateral sclerosis in rodents. Nat. Rev. Neurosci. 23, 231-251.
|
|
Tokutake, Y., Gushima, K., Miyazaki, H., Shimosato, T., Yonekura, S., 2015. ALS-associated P56S-VAPB mutation restrains 3T3-L1 preadipocyte differentiation. Biochem. Biophys. Res. Commun. 460, 831-837.
|
|
Toth, R.P., Atkin, J.D., 2018. Dysfunction of optineurin in amyotrophic lateral sclerosis and glaucoma. Front. Immunol. 9, 1017.
|
|
Trojsi, F., D’Alvano, G., Bonavita, S., Tedeschi, G., 2020. Genetics and sex in the pathogenesis of amyotrophic lateral sclerosis (ALS): is there a link? Int. J. Mol. Sci. 21, 3647.
|
|
Tsuji, T., Sun, Y., Kishimoto, K., Olson, K.A., Liu, S., Hirukawa, S., Hu, G.F., 2005. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res. 65, 1352-1360.
|
|
Tudor, E.L., Galtrey, C.M., Perkinton, M.S., Lau, K.F., De Vos, K.J., Mitchell, J.C., Ackerley, S., Hortobagyi, T., Vamos, E., Leigh, P.N., et al., 2010. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience 167, 774-785.
|
|
Udine, E., Jain, A., van Blitterswijk, M., 2023. Advances in sequencing technologies for amyotrophic lateral sclerosis research. Mol. Neurodegener. 18, 4.
|
|
Valdmanis, P.N., Belzil, V.V., Lee, J., Dion, P.A., St-Onge, J., Hince, P., Funalot, B., Couratier, P., Clavelou, P., Camu, W., et al., 2009. A mutation that creates a pseudoexon in SOD1 causes familial ALS. Ann. Hum. Genet. 73, 652-657.
|
|
van Blitterswijk, M., Mullen, B., Heckman, M.G., Baker, M.C., DeJesus-Hernandez, M., Brown, P.H., Murray, M.E., Hsiung, G.Y.R., Stewart, H., Karydas, A.M., et al., 2014. Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiol. Aging 35, 2421.e13-2421.e17.
|
|
van Blitterswijk, M., van Es, M.A., Koppers, M., van Rheenen, W., Medic, J., Schelhaas, H.J., van der Kooi, A.J., de Visser, M., Veldink, J.H., van den Berg, L.H., 2012. VAPB and C9orf72 mutations in 1 familial amyotrophic lateral sclerosis patient. Neurobiol. Aging 33, 2950.e1-2950.e4.
|
|
van Es, M.A., Diekstra, F.P., Veldink, J.H., Baas, F., Bourque, P.R., Schelhaas, H.J., Strengman, E., Hennekam, E.A.M., Lindhout, D., Ophoff, R.A., et al., 2009. A case of ALS-FTD in a large FALS pedigree with a K17I ANG mutation. Neurology 72, 287-288.
|
|
van Hummel, A., Sabale, M., Przybyla, M., van der Hoven, J., Chan, G., Feiten, A.F., Chung, R.S., Ittner, L.M., Ke, Y.D., 2023. TDP-43 pathology and functional deficits in wild-type and ALS/FTD mutant cyclin F mouse models. Neuropathol. Appl. Neurobiol. 49, e12902.
|
|
van Rheenen, W., Shatunov, A., Dekker, A.M., McLaughlin, R.L., Diekstra, F.P., Pulit, S.L., van der Spek, R.A.A., Vosa, U., de Jong, S., Robinson, M.R., et al., 2016. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 48, 1043-1048.
|
|
Van Schoor, E., Vandenbulcke, M., Bercier, V., Vandenberghe, R., van der Zee, J., Van Broeckhoven, C., Otto, M., Hanseeuw, B., Van Damme, P., Van Den Bosch, L., et al., 2022. Frontotemporal lobar degeneration case with an N-terminal TUBA4A mutation exhibits reduced TUBA4A levels in the brain and TDP-43 pathology. Biomolecules 12, 440.
|
|
Vance, C., Rogelj, B., Hortobagyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P., et al., 2009. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208-1211.
|
|
Volk, A.E., Weishaupt, J.H., Andersen, P.M., Ludolph, A.C., Kubisch, C., 2018. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med. Genet. 30, 252-258.
|
|
Waegaert, R., Dirrig-Grosch, S., Liu, H., Boutry, M., Luan, P., Loeffler, J.P., Rene, F., 2022. Alteration of the neuromuscular junction and modifications of muscle metabolism in response to neuron-restricted expression of the CHMP2Bintron5 mutant in a mouse model of ALS-FTD syndrome. Biomolecules 12, 497.
|
|
Waibel, S., Neumann, M., Rabe, M., Meyer, T., Ludolph, A.C., 2010. Novel missense and truncating mutations in FUS/TLS in familial ALS. Neurology 75, 815-817.
|
|
Wang, F., Liu, X., He, J., Zhang, N., Chen, L., Tang, L., Fan, D., 2022. Analysis of ERBB4 variants in amyotrophic lateral sclerosis within a Chinese cohort. Front. Neurol. 13, 865264.
|
|
Wang, G.Y., Rayner, S.L., Chung, R., Shi, B.Y., Liang, X.J., 2020. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Mater. Today Bio 6, 100055.
|
|
Watanabe, S., Ilieva, H., Tamada, H., Nomura, H., Komine, O., Endo, F., Jin, S., Mancias, P., Kiyama, H., Yamanaka, K., 2016. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol. Med. 8, 1421-1437.
|
|
Wei, Q., Chen, X., Chen, Y., Ou, R., Cao, B., Hou, Y., Zhang, L., Shang, H.F., 2019. Unique characteristics of the genetics epidemiology of amyotrophic lateral sclerosis in China. Sci. China:Life Sci. 62, 517-525.
|
|
Williams, K.L., Topp, S., Yang, S., Smith, B., Fifita, J.A., Warraich, S.T., Zhang, K.Y., Farrawell, N., Vance, C., Hu, X., et al., 2016. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun 7, 11253.
|
|
Witke, W., Sutherland, J.D., Sharpe, A., Arai, M., Kwiatkowski, D.J., 2001. Profilin I is essential for cell survival and cell division in early mouse development. Proc. Natl. Acad. Sci. U. S. A. 98, 3832-3836.
|
|
Wong, T.H., Pottier, C., Hondius, D.C., Meeter, L.H.H., van Rooij, J.G.J., Melhem, S., van Minkelen, R., van Duijn, C.M., Rozemuller, A.J.M., Seelaar, H., et al., 2018. Three VCP mutations in patients with frontotemporal dementia. J. Alzheimers Dis. 65, 1139-1146.
|
|
Woo, J.A., Liu, T., Trotter, C., Fang, C.C., De Narvaez, E., LePochat, P., Maslar, D., Bukhari, A., Zhao, X., Deonarine, A., et al., 2017. Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity. Nat. Commun. 8, 15558.
|
|
Wu, C.H., Fallini, C., Ticozzi, N., Keagle, P.J., Sapp, P.C., Piotrowska, K., Lowe, P., Koppers, M., McKenna-Yasek, D., Baron, D.M., et al., 2012. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488, 499-503.
|
|
Wu, Q., Liu, M., Huang, C., Liu, X., Huang, B., Li, N., Zhou, H., Xia, X.G., 2014. Pathogenic Ubqln2 gains toxic properties to induce neuron death. Acta Neuropathol. 129, 417-428.
|
|
Xia, R., Liu, Y., Yang, L., Gal, J., Zhu, H., Jia, J., 2012. Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS. Mol. Neurodegener. 7, 10.
|
|
Xiao, T., Jiao, B., Zhang, W., Pan, C., Wei, J., Liu, X., Zhou, Y., Zhou, L., Tang, B., Shen, L., 2016. Identification of CHCHD10 mutation in Chinese patients with Alzheimer disease. Mol. Neurobiol. 54, 5243-5247.
|
|
Xu, L., Liu, T., Liu, L., Yao, X., Chen, L., Fan, D., Zhan, S., Wang, S., 2019. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. 267, 944-953.
|
|
Yamashita, S., Ando, Y., 2015. Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis. Transl. Neurodegener. 4, 13.
|
|
Yang, C., Danielson, E.W., Qiao, T., Metterville, J., Brown, R.H., Landers, J.E., Xu, Z., 2016. Mutant PFN1 causes ALS phenotypes and progressive motor neuron degeneration in mice by a gain of toxicity. Proc. Natl. Acad. Sci. U. S. A. 113, e6209-e6218.
|
|
Yang, C., Wang, H., Qiao, T., Yang, B., Aliaga, L., Qiu, L., Tan, W., Salameh, J., McKenna-Yasek, D.M., Smith, T., et al., 2014. Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U. S. A. 111, e1121-e1129.
|
|
Yang, L., Cheng, Y., Jia, X., Liu, X., Li, X., Zhang, K., Shen, D., Liu, M., Guan, Y., Liu, Q., et al., 2021. Four novel optineurin mutations in patients with sporadic amyotrophic lateral sclerosis in Mainland China. Neurobiol. Aging 97, 149.e1-149.e8.
|
|
Yang, S., Li, Y., Yang, L., Guo, Q., You, Y., Lei, B., 2023. Pathogenicity and functional analysis of CFAP410 mutations causing cone-rod dystrophy with macular staphyloma. Front. Med. 10, 1216427.
|
|
Yang, Y., Hentati, A., Deng, H.X., Dabbagh, O., Sasaki, T., Hirano, M., Hung, W.Y., Ouahchi, K., Yan, J., Azim, A.C., et al., 2001. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet. 29, 160-165.
|
|
Yao, L., He, X., Cui, B., Zhao, F., Zhou, C., 2021. NEK1 mutations and the risk of amyotrophic lateral sclerosis (ALS): a meta-analysis. Neurol. Sci. 42, 1277-1285.
|
|
Yilihamu, M., Liu, X., Liu, X., Chen, Y., Fan, D., 2022. Case report: a variant of the FIG4 gene with rapidly progressive amyotrophic lateral sclerosis. Front. Neurol. 13, 984866.
|
|
Yu, J., Deng, J., Wang, Z., 2022. Oculopharyngodistal myopathy. Curr. Opin. Neurol. 35, 637-644.
|
|
Yuan, D., Jiang, S., Xu, R., 2024. Clinical features and progress in diagnosis and treatment of amyotrophic lateral sclerosis. Ann. Med. 56, 2399962.
|
|
Yuan, Y., Liu, Z., Hou, X., Li, W., Ni, J., Huang, L., Hu, Y., Liu, P., Hou, X., Xue, J., et al., 2020. Identification of GGC repeat expansion in the NOTCH2NLC gene in amyotrophic lateral sclerosis. Neurology 95, e3394-e3405.
|
|
Yuan, Z., Jiao, B., Hou, L., Xiao, T., Liu, X., Wang, J., Xu, J., Zhou, L., Yan, X., Tang, B., et al., 2018. Mutation analysis of the TIA1 gene in Chinese patients with amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol. Aging 64, 160.e9-160.e12.
|
|
Zambon, A.A., Pini, V., Bosco, L., Falzone, Y.M., Munot, P., Muntoni, F., Previtali, S.C., 2023. Early onset hereditary neuronopathies: an update on non-5qmotor neuron diseases. Brain 146, 806-822.
|
|
Zhang, X., Yamashita, S., Hara, K., Doki, T., Tawara, N., Ikeda, T., Misumi, Y., Zhang, Z., Matsuo, Y., Nagai, M., et al., 2019. A mutant MATR3 mouse model to explain multisystem proteinopathy. J. Pathol. 249, 182-192.
|
|
Zhao, B., Jiang, Q., Lin, J., Wei, Q., Li, C., Hou, Y., Cao, B., Zhang, L., Ou, R., Liu, K., et al., 2023. Genetic and phenotypic spectrum of amyotrophic lateral sclerosis patients with CCNF variants from a large Chinese cohort. Mol. Neurobiol. 60, 4150-4160.
|
|
Zhou, Q., Chen, Y., Wei, Q., Cao, B., Wu, Y., Zhao, B., Ou, R., Yang, J., Chen, X., Hadano, S., et al., 2016. Mutation screening of the CHCHD10 gene in Chinese patients with amyotrophic lateral sclerosis. Mol. Neurobiol. 54, 3189-3194.
|
|
Zou, Z.Y., Li, X.G., Liu, M.S., Cui, L.Y., 2013. Screening for C9orf72 repeat expansions in Chinese amyotrophic lateral sclerosis patients. Neurobiol. Aging 34, 1710.e5-1710.e6.
|
|
Zou, Z.Y., Zhou, Z.R., Che, C.H., Liu, C.Y., He, R.L., Huang, H.P., 2017. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 88, 540-549.
|