|
Chen, Z., Lu, Y., Feng, L., Hao, W., Li, C., Yang, Y., Fan, X., Li, Q., Zhang, C., Liu, Q., 2020. Genetic dissection and functional differentiation of ALKa and ALKb, two natural alleles of the ALK/SSIIa gene, responding to low gelatinization temperature in rice. Rice (N Y) 13, 39.
|
|
Dong, F., Miller, J.T., Jackson, S.A., Wang, G.L., Ronald, P.C., Jiang, J., 1998. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc. Natl. Acad. Sci. U. S. A. 95, 8135-8140.
|
|
Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., Zhang, Q., 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164-1171.
|
|
Gao, Z., Zeng, D., Cheng, F., Tian, Z., Guo, L., Su, Y., Yan, M., Jiang, H., Dong, G., Huang, Y., et al., 2011. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice. J. Integr. Plant Biol. 53, 756-765.
|
|
He, N., Huang, F., Yang, D., 2023. Fine mapping and cloning of a qRA2 affect the ratooning ability in rice (Oryza sativa L.). Int. J. Mol. Sci. 24, 967.
|
|
Jiang, L., Huang, J., Zhang, K., Huang, Y., Wang, H., Song, S., Zhou, K., 2007. Rice genetic map construction based on elite indica rice, Jiafuzhan. Journal of Xiamen University (Natural Science), 262-267.
|
|
Kan, Y., Mu, X.R., Zhang, H., Gao, J., Shan, J.X., Ye, W.W., Lin, H.X., 2022. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nat. Plants 8, 53-67.
|
|
Li, X.M., Chao, D.Y., Wu, Y., Huang, X., Chen, K., Cui, L.G., Su, L., Ye, W.W., Chen, H., Chen, H.C., et al., 2015. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat. Genet. 47, 827-833.
|
|
Ou, S., Chen, J., Jiang, N., 2018. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46, e126.
|
|
Qin, P., Lu, H., Du, H., Wang, H., Chen, W., Chen, Z., He, Q., Ou, S., Zhang, H., Li, X., et al., 2021a. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542-3558.
|
|
Qin, P., Zhang, G., Hu, B., Wu, J., Chen, W., Ren, Z., Liu, Y., Xie, J., Yuan, H., Tu, B., et al., 2021b. Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism. Sci. Adv. 7, eabc8873.
|
|
Song, J.M., Xie, W.Z., Wang, S., Guo, Y.X., Koo, D.H., Kudrna, D., Gong, C., Huang, Y., Feng, J.W., Zhang, W., et al., 2021. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol. Plant 14, 1757-1767.
|
|
Tabassum, R., Dosaka, T., Ichida, H., Morita, R., Ding, Y., Abe, T., Katsube-Tanaka, T., 2020. FLOURY ENDOSPERM11-2 encodes plastid HSP70-2 involved with the temperature-dependent chalkiness of rice (Oryza sativa L.) grains. Plant J. 103, 604-616.
|
|
Wada, H., Hatakeyama, Y., Onda, Y., Nonami, H., Nakashima, T., Erra-Balsells, R., Morita, S., Hiraoka, K., Tanaka, F., Nakano, H., 2019. Multiple strategies for heat adaptation to prevent chalkiness in the rice endosperm. J. Exp. Bot. 70, 1299-1311.
|
|
Wang, H., Huang, H., Qiu, S., Zhang, S., Fang, Y., Cai, J., Zheng, X., Huang, Y., Chen, R., Sun, C., et al., 2006. Breeding and applicantion of Jiafuzhan——a new breed of early indica rice of high quality. Journal of Xiamen University (Natural Science), 114-119.
|
|
Wei, X., Qiu, J., Yong, K., Fan, J., Zhang, Q., Hua, H., Liu, J., Wang, Q., Olsen, K.M., Han, B., et al., 2021. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat. Genet. 53, 243-253.
|
|
Xu, H., Li, X., Zhang, H., Wang, L., Zhu, Z., Gao, J., Li, C., Zhu, Y., 2020. High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice. Plant Cell Environ. 43, 1879-1896.
|
|
Zhang, A., Kong, T., Sun, B., Qiu, S., Guo, J., Ruan, S., Guo, Y., Guo, J., Zhang, Z., Liu, Y., et al., 2024. A telomere-to-telomere genome assembly of Zhonghuang 13, a widely-grown soybean variety from the original center of Glycine max. Crop J. 12, 142-153.
|
|
Zhang, C., Zhu, J., Chen, S., Fan, X., Li, Q., Lu, Y., Wang, M., Yu, H., Yi, C., Tang, S., et al., 2019. Wxlv, the ancestral allele of rice Waxy gene. Mol. Plant 12, 1157-1166.
|
|
Zhao, D., Zhang, C., Li, Q., Liu, Q., 2022. Genetic control of grain appearance quality in rice. Biotechnol. Adv. 60, 108014.
|
|
Zhao, D.S., Li, Q.F., Zhang, C.Q., Zhang, C., Yang, Q.Q., Pan, L.X., Ren, X.Y., Lu, J., Gu, M.H., Liu, Q.Q., 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat. Commun. 9, 1240.
|