9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 11
Nov.  2025
Turn off MathJax
Article Contents

The circadian clock at the intersection of metabolism and aging – emerging roles of metabolites

doi: 10.1016/j.jgg.2025.04.014
Funds:

This work was supported by grants from the Chinese Academy of Sciences (XDB39050800), the Major Project of Guangzhou National Laboratory (GZNL2024A03013), and the National Natural Science Foundation of China (92357308 and 32321004).

  • Received Date: 2025-04-06
  • Accepted Date: 2025-04-24
  • Rev Recd Date: 2025-04-24
  • Publish Date: 2025-04-29
  • The circadian clock is a highly hierarchical network of endogenous pacemakers that primarily maintains and directs oscillations through transcriptional and translational feedback loops, which modulates an approximately 24-h cycle of endocrine and metabolic rhythms within cells and tissues. While circadian clocks regulate metabolic processes and related physiology, emerging evidence indicates that metabolism and circadian rhythm are intimately intertwined. In this review, we highlight the concept of metabolites, including lipids and other polar metabolites generated from intestinal microbial metabolism and nutrient intake, as time cues that drive changes in circadian rhythms, which in turn influence metabolism and aging. Furthermore, we discuss the roles of functional metabolites as circadian cues, paving a new direction on potential intervention targets of circadian disruption, pathological aging, as well as metabolic diseases that are clinically important.
  • loading
  • Acosta-Rodriguez, V.A., Rijo-Ferreira, F., Green, C.B., Takahashi, J.S., 2021. Importance of circadian timing for aging and longevity. Nat. Commun. 12, 2862.
    Allada, R., Bass, J., 2021. Circadian mechanisms in medicine REPLY. N. Engl. J. Med. 384, e76.
    Alonso-Gomez, A., Madera, D., Alonso-Gomez, A.L., Valenciano, A.I., Delgado, M.J., 2022. Daily rhythms in the IGF-1 system in the liver of goldfish and their synchronization to light/dark cycle and feeding time. Animals 12, 3371.
    Amatobi, K.M., Ozbek-Unal, A.G., Schabler, S., Deppisch, P., Helfrich-Forster, C., Mueller, M.J., Wegener, C., Fekete, A., 2023. The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition. J. Lipid Res. 64, 100417.
    Ashimori, A., Nakahata, Y., Sato, T., Fukamizu, Y., Matsui, T., Yoshitane, H., Fukada, Y., Shinohara, K., Bessho, Y., 2021. Attenuated SIRT1 activity leads to PER2 cytoplasmic localization and dampens the amplitude of Bmal1 promoter-driven circadian oscillation. Front. Neurosci. 15, 647589.
    Aviram, R., Manella, G., Kopelman, N., Neufeld-Cohen, A., Zwighaft, Z., Elimelech, M., Adamovich, Y., Golik, M., Wang, C., Han, X. et al., 2016. Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol. Cell 62, 636-648.
    Bargiello, T.A., Young, M.W., 1984. Molecular-genetics of a biological clock in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 81, 2142-2146.
    Bass, J., 2024. Interorgan rhythmicity as a feature of healthful metabolism. Cell Metab. 36, 655-669.
    Bedrosian, T.A., Nelson, R.J., 2017. Timing of light exposure affects mood and brain circuits. Transl. Psychiat. 7, e1017.
    Byrns, C.N., Perlegos, A.E., Miller, K.N., Jin, Z., Carranza, F.R., Manchandra, P., Beveridge, C.H., Randolph, C.E., Chaluvadi, V.S., Zhang, S.L. et al., 2024. Senescent glia link mitochondrial dysfunction and lipid accumulation. Nature 630, 475-483.
    Cao, R., Robinson, B., Xu, H.Y., Gkogkas, C., Khoutorsky, A., Alain, T., Yanagiya, A., Nevarko, T., Liu, A.C., Amir, S. et al., 2013. Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 Signaling. Neuron 79, 712-724.
    Ch, R., Rey, G., Ray, S., Jha, P.K., Driscoll, P.C., Dos Santos, M.S., Malik, D.M., Lach, R., Weljie, A.M., MacRae, J.I. et al., 2021. Rhythmic glucose metabolism regulates the redox circadian clockwork in human red blood cells. Nat. Commun. 12, 377.
    Chang, H.C., Guarente, L., 2013. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448-1460.
    Chen, H., Tao, Y., Li, M.-D., Gu, Y., Yang, J., Wu, Y., Yu, D., Yuan, C., 2022a. Temporal patterns of energy intake and cognitive function and its decline: a community-based cohort study in China. Life Metab. 1, 94-97.
    Chen, X., Li, J., Gao, Z., Yang, Y., Kuang, W., Dong, Y., Chua, G.H., Huang, X., Jiang, B., Tian, H. et al., 2022b. Endogenous ceramide phosphoethanolamine modulates circadian rhythm via neural-glial coupling in Drosophila. Natl. Sci. Rev. 9, nwac148.
    Chen, J., Xiang, J., Zhou, M., Huang, R., Zhang, J., Cui, Y., Jiang, X., Li, Y., Zhou, R., Xin, H., et al., 2025. Dietary timing enhances exercise by modulating fat-muscle crosstalk via adipocyte AMPKα2 signaling. Cell Metab. 37, 1364–1380.
    Cho, H., Zhao, X., Hatori, M., Yu, R.T., Barish, G.D., Lam, M.T., Chong, L.W., DiTacchio, L., Atkins, A.R., Glass, C.K. et al., 2012. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123-127.
    Chua, E.C.P., Shui, G., Cazenave-Gassiot, A., Wenk, M.R., Gooley, J.J., 2015. Changes in plasma lipids during exposure to total sleep deprivation. Sleep 38, 1683-1691.
    Chua, E.C.P., Shui, G., Lee, I.T.G., Lau, P., Tan, L.C., Yeo, S.C., Lam, B.D., Bulchand, S., Summers, S.A., Puvanendran, K. et al., 2013. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc. Natl. Acad. Sci. U. S. A. 110, 14468-14473.
    Colwell, C.S., 2021. Defining circadian disruption in neurodegenerative disorders. J. Clin. Investig. 131, e148288.
    Dickmeis, T., 2009. Glucocorticoids and the circadian clock. J. Endocrinol. 200, 3-22.
    Dierickx, P., Zhu, K., Carpenter, B.J., Jiang, C., Vermunt, M.W., Xiao, Y., Luongo, T.S., Yamamoto, T., Marti-Pamies, I., Mia, S. et al., 2022. Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD(+) biosynthesis and sustain cardiac function. Nat. Cardiovasc. Res. 1, 45-58.
    Ding, G., Li, X., Hou, X., Zhou, W., Gong, Y., Liu, F., He, Y., Song, J., Wang, J., Basil, P. et al., 2021. REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity. Nature 592, 763-767.
    Ding, J., Chen, P., Qi, C., 2024. Circadian rhythm regulation in the immune system. Immunology 171, 525-533.
    Du, Y., Chen, X., Kajiwara, S., Orihara, K., 2024. Effect of urolithin A on the improvement of circadian rhythm dysregulation in intestinal barrier induced by inflammation. Nutrients 16, 2263.
    Dubrovsky, Y.V., Samsa, W.E., Kondratov, R.V., 2010. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging 2, 936-944.
    Ezagouri, S., Zwighaft, Z., Sobel, J., Baillieul, S., Doutreleau, S., Ladeuix, B., Golik, M., Verges, S., Asher, G., 2019. Physiological and molecular dissection of daily variance in exercise capacity. Cell Metab. 30, 78-91.
    Fadini, G.P., de Kreutzenberg, S.V., Rigato, M., Brocco, S., Marchesan, M., Tiengo, A., Avogaro, A., 2011. Characteristics and outcomes of the hyperglycemic hyperosmolar non-ketotic syndrome in a cohort of 51 consecutive cases at a single center. Diabetes Res. Clin. Pract. 94, 172-179.
    Fagiani, F., Di Marino, D., Romagnoli, A., Travelli, C., Voltan, D., Di Cesare Mannelli, L., Racchi, M., Govoni, S., Lanni, C., 2022. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct. Target Ther. 7, 41.
    Fan, Y., Pedersen, O., 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55-71.
    Frazier, K., Manzoor, S., Carroll, K., DeLeon, O., Miyoshi, S., Miyoshi, J., St George, M., Tan, A., Chrisler, E.A., Izumo, M. et al., 2023. Gut microbes and the liver circadian clock partition glucose and lipid metabolism. J. Clin. Invest. 133, e162515.
    Fu, M., Liu, S., Che, Y., Cui, D., Deng, Z., Li, Y., Zou, X., Kong, X., Chen, G., Zhang, M. et al., 2024. Genome-editing of a circadian clock gene TaPRR95 facilitates wheat peduncle growth and heading date. J. Genet. Genomics 51, 1101-1110.
    Fu, Z., Kim, H., Morse, P.T., Lu, M.J., Huttemann, M., Cambronne, X.A., Zhang, K., Zhang, R., 2022. The mitochondrial NAD transporter SLC25A51 is a fasting-induced gene affecting SIRT3 functions. Metabolism 135, 155275.
    Fulop, N., Feng, W., Xing, D., He, K., Nőt, L.G., Brocks, C.A., Marchase, R.B., Miller, A.P., Chatham, J.C., 2008. Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats. Biogerontology 9, 139.
    Giri, A., Wang, Q., Rahman, I., Sundar, I.K., 2022. Circadian molecular clock disruption in chronic pulmonary diseases. Trends Mol. Med. 28, 513-527.
    Gombert, M., Cousin, R., Garcia, A.C., Luna, J.C., Franch, P.C., Lanneluc, I., Bordenave-Juchereau, S.J.S.M., 2022. The circadian expressions of metabolism genes in human adipocytes: the impact of melatonin. Sleep Medicine 100, S25.
    Gooley, J.J., Chua, E.C., 2014. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J. Genet. Genomics 41, 231-250.
    Guan, D., Xiong, Y., Trinh, T.M., Xiao, Y., Hu, W., Jiang, C., Dierickx, P., Jang, C., Rabinowitz, J.D., Lazar, M.A., 2020. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science 369, 1388-1394.
    Guler, A.D., Ecker, J.L., Lall, G.S., Haq, S., Altimus, C.M., Liao, H.W., Barnard, A.R., Cahill, H., Badea, T.C., Zhao, H. et al., 2008. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453, 102-105.
    Haraguchi, A., Du, Y., Shiraishi, R., Takahashi, Y., Nakamura, T.J., Shibata, S., 2022. Oak extracts modulate circadian rhythms of clock gene expression in vitro and wheel-running activity in mice. Sleep Biol. Rhythms 20, 255-266.
    Harrison, D.E., Strong, R., Sharp, Z.D., Nelson, J.F., Astle, C.M., Flurkey, K., Nadon, N.L., Wilkinson, J.E., Frenkel, K., Carter, C.S. et al., 2009. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395.
    He, Z., Zhang, W., Chen, P., Li, S., Tao, M., Yue, F., Hong, W., Feng, S., Jing, N., 2025. Amyloid-β oligomers drive amyloid deposit and cascaded tau pathology of Alzheimer's disease in aged brains of non-human primates. J. Genet. Genomics. doi: 10.1016/j.jgg.2025.02.007.
    Hepler, C., Weidemann, B.J., Waldeck, N.J., Marcheva, B., Cedernaes, J., Thorne, A.K., Kobayashi, Y., Nozawa, R., Newman, M.V., Gao, P. et al., 2022. Time-restricted feeding mitigates obesity through adipocyte thermogenesis. Science 378, 276-284.
    Hirano, A., Braas, D., Fu, Y.H., Ptacek, L.J., 2017. FAD regulates CRYPTOCHROME protein stability and circadian Clock in mice. Cell Rep. 19, 255-266.
    Hu, X., Sun, M., Chen, Q., Zhao, Y., Liang, N., Wang, S., Yin, P., Yang, Y., Lam, S.M., Zhang, Q. et al., 2023. Skeletal muscle-secreted DLPC orchestrates systemic energy homeostasis by enhancing adipose browning. Nat. Commun. 14, 7916.
    Huang, Y., Liu, D., Wei, X., Huang, C., Li, C., Zhang, H., 2022. Time-restricted eating on weight loss: implications from the TREATY study. Life Med. 1, 58-60.
    Hui, Y., Zhong, Y., Kuang, L., Xu, J., Hao, Y., Cao, J., Zheng, T., 2024. O-GlcNAcylation of circadian clock protein Bmal1 impairs cognitive function in diabetic mice. EMBO J. 43, 5667-5689.
    Iascone, D.M., Zhang, X., Brafford, P., Mesaros, C., Sela, Y., Hofbauer, S., Zhang, S.L., Madhwal, S., Cook, K., Pivarshev, P., 2024. Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells. Proc. Natl. Acad. Sci. U. S. A. 121, e2319782121.
    Ikeda, R., Tsuchiya, Y., Koike, N., Umemura, Y., Inokawa, H., Ono, R., Inoue, M., Sasawaki, Y., Grieten, T., Okubo, N. et al., 2019. REV-ERBα and REV-ERBβ function as key factors regulating mammalian circadian output. Sci. Rep. 9, 10171.
    Jacobi, D., Liu, S., Burkewitz, K., Kory, N., Knudsen, N.H., Alexander, R.K., Unluturk, U., Li, X., Kong, X., Hyde, A.L. et al., 2015. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. 22, 709-720.
    Ji, C., Ou, Y., Yu, W., Lv, J., Zhang, F., Li, H., Gu, Z., Li, J., Zhong, Z., Wang, H., 2024. Thyroid-stimulating hormone-thyroid hormone signaling contributes to circadian regulation through repressing clock2/npas2 in zebrafish. J. Genet. Genomics 51, 61-74.
    Juste, Y.R., Kaushik, S., Bourdenx, M., Aflakpui, R., Bandyopadhyay, S., Garcia, F., Diaz, A., Lindenau, K., Tu, V., Krause, G.J. et al., 2021. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat. Cell Biol. 23, 1255-1270.
    Khapre, R.V., Kondratova, A.A., Patel, S., Dubrovsky, Y., Wrobel, M., Antoch, M.P., Kondratov, R.V., 2014. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging 6, 48-57.
    Koike, N., Yoo, S.H., Huang, H.C., Kumar, V., Lee, C., Kim, T.K., Takahashi, J.S., 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349-354.
    Kondratov, R.V., Kondratova, A.A., Gorbacheva, V.Y., Vykhovanets, O.V., Antoch, M.P., 2006. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Gene. Dev. 20, 1868-1873.
    Konopka, R.J., Benzer, S., 1971. Clock mutants of Drosophila-Melanogaster. Proc. Natl. Acad. Sci. U. S. A. 68, 2112-2116.
    Kuatov, R., Takano, J., Arie, H., Kominami, M., Tateishi, N., Wakabayashi, K.I., Takemoto, D., Izumo, T., Nakao, Y., Nakamura, W. et al., 2024. Urolithin A modulates PER2 degradation via SIRT1 and enhances the amplitude of circadian clocks in human senescent cells. Nutrients 17, 20.
    Kumar, A., Vaca-Dempere, M., Mortimer, T., Deryagin, O., Smith, J.G., Petrus, P., Koronowski, K.B., Greco, C.M., Segales, J., Andres, E. et al., 2024. Brain-muscle communication prevents muscle aging by maintaining daily physiology. Science 384, 563-572.
    Lam, S.M., Wang, Z., Song, J.W., Shi, Y., Liu, W.Y., Wan, L.Y., Duan, K., Chua, G.H., Zhou, Y., Wang, G. et al., 2024. Non-invasive lipid panel of MASLD fibrosis transition underscores the role of lipoprotein sulfatides in hepatic immunomodulation. Cell Metab. 37, 69-86.
    Lamia, K.A., Papp, S.J., Yu, R.T., Barish, G.D., Uhlenhaut, N.H., Jonker, J.W., Downes, M., Evans, R.M., 2011. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552-556.
    Lamia, K.A., Sachdeva, U.M., DiTacchio, L., Williams, E.C., Alvarez, J.G., Egan, D.F., Vasquez, D.S., Juguilon, H., Panda, S., Shaw, R.J. et al., 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437-440.
    Lamia, K.A., Storch, K.F., Weitz, C.J., 2008. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U. S. A. 105, 15172-15177.
    Leal, H., Carvalhas-Almeida, C., Alvaro, A.R., Cavadas, C., 2024. Modeling hypothalamic pathophysiology in vitro for metabolic, circadian, and sleep disorders. Trends Endocrinol. Metab. 35, 505-517.
    Lee, S., Donehower, L.A., Herron, A.J., Moore, D.D., Fu, L., 2010. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS ONE 5, e10995.
    Levine, D.C., Hong, H., Weidemann, B.J., Ramsey, K.M., Affinati, A.H., Schmidt, M.S., Cedernaes, J., Omura, C., Braun, R., Lee, C. et al., 2020. NAD+ controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol. Cell 78, 835-849.
    Li, J., Dong, Y., Zhou, T., Tian, H., Huang, X., Zhang, Y.Q., Wang, Y., Lam, S.M., Shui, G., 2024. Long-chain acyl-CoA synthetase regulates systemic lipid homeostasis via glycosylation-dependent lipoprotein production. Life Metab. 3, loae004.
    Li, M.D., Ruan, H.B., Hughes, M.E., Lee, J.S., Singh, J.P., Jones, S.P., Nitabach, M.N., Yang, X., 2013. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 17, 303-310.
    Li, W.-J., Wang, C.-W., Tao, L., Yan, Y.-H., Zhang, M.-J., Liu, Z.-X., Li, Y.-X., Zhao, H.-Q., Li, X.-M., He, X.-D. et al., 2021. Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nat. Commun. 12, 4568.
    Liang, C., Liu, Z., Song, M., Li, W., Wu, Z., Wang, Z., Wang, Q., Wang, S., Yan, K., Sun, L. et al., 2021. Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res. 31, 187-205.
    Liu, A.C., Tran, H.G., Zhang, E.E., Priest, A.A., Welsh, D.K., Kay, S.A., 2008. Redundant function of REV-ERBα and β and non-essential role for BMAL1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 4, e1000023.
    Liu, X., Cai, Y.D., Chiu, J.C., 2024. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J. Biol. Chem. 300, 105616.
    Liu, C., Li, S., Liu, T., Borjigin, J., Lin, J.D., 2007. Transcriptional coactivator PGC-1a integrates the mammalian clock and energy metabolism. Nature 447, 477-481.
    Liu, X., Blazenovic, I., Contreras, A.J., Pham, T.M., Tabuloc, C.A., Li, Y.H., Ji, J., Fiehn, O., Chiu, J.C., 2021. Hexosamine biosynthetic pathway and O-GlcNAc-processing enzymes regulate daily rhythms in protein O-GlcNAcylation. Nat. Commun. 12, 4173.
    Liu, Z., Qian, M., Tang, X., Hu, W., Sun, S., Li, G., Zhang, S., Meng, F., Cao, X., Sun, J. et al., 2019. SIRT7 couples light-driven body temperature cues to hepatic circadian phase coherence and gluconeogenesis. Nat. Metab. 1, 1141-1156.
    Marcheva, B., Ramsey, K.M., Buhr, E.D., Kobayashi, Y., Su, H., Ko, C.H., Ivanova, G., Omura, C., Mo, S., Vitaterna, M.H. et al., 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627-631.
    Matt, S.M., Allen, J.M., Lawson, M.A., Mailing, L.J., Woods, J.A., Johnson, R.W., 2018. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front. Immunol. 9, 1832.
    McDonnell, E., Peterson, B.S., Bomze, H.M., Hirschey, M.D., 2015. SIRT3 regulates progression and development of diseases of aging. Trends Endocrinol. Met. 26, 486-492.
    Miao, H., Li, B., Wang, Z., Mu, J., Tian, Y., Jiang, B., Zhang, S., Gong, X., Shui, G., Lam, S.M., 2022. Lipidome atlas of the developing heart uncovers dynamic membrane lipid attributes underlying cardiac structural and metabolic maturation. Research 2022, 0185.
    Motawi, T.K., Shaker, O.G., Hassanin, S.O., Ibrahim, S.G., Senousy, M.A., 2022. Genetic and epigenetic control on clock genes in multiple sclerosis. J. Genet. Genomics 49, 74-76.
    Murthy, V.L., Reis, J.P., Pico, A.R., Kitchen, R., Lima, J.A.C., Lloyd-Jones, D., Allen, N.B., Carnethon, M., Lewis, G.D., Nayor, M. et al., 2020. Comprehensive metabolic phenotyping refines cardiovascular risk in young adults. Circulation 142, 2110-2127.
    Nakahata, Y., Bessho, Y., 2016. The crcadian NAD(+) metabolism: impact on chromatin remodeling and aging. BioMed Res. Int. 2016, 3208429.
    Norheim, K.L., Ben Ezra, M., Heckenbach, I., Andreasson, L.M., Eriksen, L.L., Dyhre-Petersen, N., Damgaard, M.V., Berglind, M., Pricolo, L., Sampson, D. et al., 2024. Effect of nicotinamide riboside on airway inflammation in COPD: a randomized, placebo-controlled trial. Nat. Aging 4, 1772-1781.
    Ogunlusi, O., Ghosh, A., Sarkar, M., Carter, K., Davuluri, H., Chakraborty, M., Eckel-Mahan, K., Keene, A., Menet, J.S., Bell-Pedersen, D. et al., 2025. Rhythm is essential: unraveling the relation between the circadian clock and cancer. Crit. Rev. Oncol. Hematol. 208, 104632.
    Park, M.D., Le Berichel, J., Hamon, P., Wilk, C.M., Belabed, M., Yatim, N., Saffon, A., Boumelha, J., Falcomata, C., Tepper, A. et al., 2024. Hematopoietic aging promotes cancer by fueling IL-1⍺-driven emergency myelopoiesis. Science 386, eadn0327.
    Parkar, S.G., Kalsbeek, A., Cheeseman, J.F., 2019. Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms 7, 41.
    Peek, C.B., 2020. Metabolic implications of crcadian-HIF Crosstalk. Trends Endocrinol. Metab. 31, 459-468.
    Preitner, N., Damiola, F., Molina, L.L., Zakany, J., Duboule, D., Albrecht, U., Schibler, U., 2002. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251-260.
    Raza, G.S., Sodum, N., Kaya, Y., Herzig, K.H., 2022. Role of circadian transcription factor Rev-Erb in metabolism and tissue fibrosis. Int. J. Mol. Sci. 23, 12954.
    Raza, U., Tang, X., Liu, Z., Liu, B., 2024. SIRT7: the seventh key to unlocking the mystery of aging. Physiol. Rev. 104, 253-280.
    Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., Puigserver, P., 2005. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113-118.
    Sadria, M., Layton, A.T., 2021. Aging affects circadian clock and metabolism and modulates timing of medication. iScience 24, 102245.
    Samsa, W.E., Vasanji, A., Midura, R.J., Kondratov, R.V., 2016. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 84, 194-203.
    Sato, S., Solanas, G., Peixoto, F.O., Bee, L., Symeonidi, A., Schmidt, M.S., Brenner, C., Masri, S., Benitah, S.A., Sassone-Corsi, P., 2017. Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 170, 664-677.
    Schilperoort, M., Rensen, P.C.N., Kooijman, S., 2020. Time for novel strategies to mitigate cardiometabolic risk in shift workers. Trends Endocrinol. Metab. 31, 952-964.
    Shepherd, M., Brook, A.J., Chakera, A.J., Hattersley, A.T., 2017. Management of sulfonylurea-treated monogenic diabetes in pregnancy: implications of placental glibenclamide transfer. Diabet. Med. 34, 1332-1339.
    Shi, H., Huang, T., Schernhammer, E.S., Sun, Q., Wang, M., 2022. Rotating night shift work and healthy aging after 24 years of follow-up in the nurses' health study. JAMA Netw. Open 5, e2210450.
    Soliz-Rueda, J.R., Cuesta-Marti, C., O'Mahony, S.M., Clarke, G., Schellekens, H., Muguerza, B., 2024. Gut microbiota and eating behaviour in circadian syndrome. Trends Endocrinol. Metab. 36, 15-28.
    Sun, Y., Jiang, W., Horng, T., 2022. Circadian metabolism regulates the macrophage inflammatory response. Life Metab. 1, 224-233.
    Takahashi, J.S., 2017. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164-179.
    Tofani, G.S.S., Leigh, S.-J., Gheorghe, C.E., Bastiaanssen, T.F.S., Wilmes, L., Sen, P., Clarke, G., Cryan, J.F., 2024. Gut microbiota regulates stress responsivity via the circadian system. Cell Metab. 37, 138-153.
    Torquati, L., Mielke, G.I., Brown, W.J., Kolbe-Alexander, T., 2018. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand. J. Work Environ. Health 44, 229-238.
    Turek, F.W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D.R. et al., 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043-1045.
    Ulgherait, M., Chen, A., McAllister, S.F., Kim, H.X., Delyenthal, R., Wayne, C.R., Garcia, C.J., Recinos, Y., Oliva, M., Canman, J.C. et al., 2020. Circadian regulation of mitochondrial uncoupling and lifespan. Nat. Commun. 11, 1927.
    Ulgherait, M., Midoun, A.M., Park, S.J., Gatto, J.A., Tener, S.J., Siewert, J., Klickstein, N., Canman, J.C., Ja, W.W., Shirasu-Hiza, M., 2021. Circadian autophagy drives iTRF-mediated longevity. Nature 598, 353-358.
    Vaccaro, A., Birman, S., Klarsfeld, A., 2016. Chronic jet lag impairs startle-induced locomotion in Drosophila. Exp. Gerontol. 85, 24-27.
    Verma, A.K., Khan, M.I., Ashfaq, F., Rizvi, S.I., 2023. Crosstalk between aging, circadian rhythm, and melatonin. Rejuv. Res. 26, 229-241.
    Vitaterna, M.H., King, D.P., Chang, A.M., Kornhauser, J.M., Lowrey, P.L., McDonald, J.D., Dove, W.F., Pinto, L.H., Turek, F.W., Takahashi, J.S., 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719-725.
    Wade, A.G., Farmer, M., Harari, G., Fund, N., Laudon, M., Nir, T., Frydman-Marom, A., Zisapel, N., 2014. Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer's disease: a 6-month, randomized, placebo-controlled, multicenter trial. Clin. Interv. Aging 9, 947-961.
    Walrath, T., Dyamenahalli, K.U., Hulsebus, H.J., McCullough, R.L., Idrovo, J.P., Boe, D.M., McMahan, R.H., Kovacs, E.J., 2021. Age-related changes in intestinal immunity and the microbiome. J. Leukoc. Biol. 109, 1045-1061.
    Walsh, M.E., Bhattacharya, A., Sataranatarajan, K., Qaisar, R., Sloane, L., Rahman, M.M., Kinter, M., Van Remmen, H., 2015. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 14, 957-970.
    Wang, X., Xu, Z., Cai, Y., Zeng, S., Peng, B., Ren, X., Yan, Y., Gong, Z., 2020. Rheostatic balance of circadian rhythm and autophagy in metabolism and disease. Front. Cell Dev. Biol. 8, 616434.
    Wang, Y., Cheng, Y., Yu, G., Jia, B., Hu, Z., Zhang, L., 2016. Expression of PER, CRY, and TIM genes for the pathological features of colorectal cancer patients. Onco Targets Ther. 9, 1997-2005.
    Welz, P.S., Benitah, S.A., 2020. Molecular connections between circadian clocks and aging. J. Mol. Biol. 432, 3661-3679.
    Wu, J., Bu, D., Wang, H., Shen, D., Chong, D., Zhang, T., Tao, W., Zhao, M., Zhao, Y., Fang, L. et al., 2023. The rhythmic coupling of Egr-1 and Cidea regulates age-related metabolic dysfunction in the liver of male mice. Nat. Commun. 14, 1634.
    Wu, R., Dang, F., Li, P., Wang, P., Xu, Q., Liu, Z., Li, Y., Wu, Y., Chen, Y., Liu, Y., 2019. The circadian protein Period2 suppresses mTORC1 activity via recruiting Tsc1 to mTORC1 complex. Cell Metab. 29, 653-667.
    Xin, H., Huang, R., Zhou, M., Chen, J., Zhang, J., Zhou, T., Ji, S., Liu, X., Tian, H., Lam, S.M. et al., 2023. Daytime-restricted feeding enhances running endurance without prior exercise in mice. Nat. Metab. 5, 1236-1251.
    Xu, L., Yu, H., Sun, H., Hu, B., Geng, Y., 2020. Dietary melatonin therapy alleviates the lamina cribrosa damages in patients with mild cognitive impairments: a double-blinded, randomized controlled study. Med. Sci. Monit. 26, e923232.
    Xu, Y., Yang, D., Wang, L., Krol, E., Mazidi, M., Li, L., Huang, Y., Niu, C., Liu, X., Lam, S.M. et al., 2023. Maternal high fat diet in lactation impacts hypothalamic neurogenesis and neurotrophic development, leading to later life susceptibility to obesity in male but not female mice. Adv. Sci. 10, e2305472.
    Yang, D., Patel, S., Szlachcic, W.J., Chmielowiec, J., Scaduto, D., Putluri, N., Sreekumar, A., Suliburk, J., Metzker, M., Balasubramanyam, A. et al., 2021. Pancreatic differentiation of stem cells reveals pathogenesis of a syndrome of ketosis-prone diabetes. Diabetes 70, 2419-2429.
    Yang, X., Qian, K., 2017. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452–465.
    Yen, C.A., Ruter, D.L., Turner, C.D., Pang, S.S., Curran, S.P., 2020. Loss of flavin adenine dinucleotide (FAD) impairs sperm function and male reproductive advantage in C. elegans. Elife 9, e52899.
    Yook, S., Choi, S.J., Lee, H., Joo, E.Y., Kim, H., 2024. Long-term night-shift work is associated with accelerates brain aging and worsens N3 sleep in female nurses. Sleep Med. 121, 69-76.
    Zehring, W.A., Wheeler, D.A., Reddy, P., Konopka, R.J., Kyriacou, C.P., Rosbash, M., Hall, J.C., 1984. P-Element transformation with Period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila-melanogaster. Cell 39, 369-376.
    Zhang, C.-S., Hardie, D.G., Lin, S.-C., 2020a. Glucose starvation blocks translation at multiple levels. Cell Metab. 31, 217-218.
    Zhang, Z., Shui, G., Li, M.D., 2021. Time to eat reveals the hierarchy of peripheral clocks. Trends Cell Biol. 31, 869–872.
    Zhang, J., Wang, G., Ma, J., Duan, Y., Sharma, S.A., Oladejo, S., Ma, X., Arellano, G., Orchard, R.C., Reese, T.A. et al., 2024a. HDAC3 integrates TGF-β and microbial cues to program tuft cell biogenesis and diurnal rhythms in mucosal immune surveillance. Sci. Immunol. 9, eadk7387.
    Zhang, L., Zhao, J., Lam, S.M., Chen, L., Gao, Y., Wang, W., Xu, Y., Tan, T., Yu, H., Zhang, M. et al., 2024b. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development. Nat. Cell Biol. 26, 278-293.
    Zhang, Z., Xin, H., Li, M.D., 2020b. Circadian rhythm of lipid metabolism in health and disease. Small Methods 4, 1900601.
    Zheng, J., Lam, S.M., Jiang, B., Mao, L., Liu, J., Zhang, Q., Yu, M., Lim, W.L.F., Tam, C.H.T., Lowe, W.L., Jr. et al., 2024. Cord blood ceramides facilitate early risk identification into childhood metabolic health. Natl. Sci. Rev. 11, nwae352.
    Zhuo, C., Zhao, F., Tian, H., Chen, J., Li, Q., Yang, L., Ping, J., Li, R., Wang, L., Xu, Y. et al., 2022. Acid sphingomyelinase/ceramide system in schizophrenia: implications for therapeutic intervention as a potential novel target. Transl. Psychiat. 12, 260.
    Zisapel, N., 2018. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol. 175, 3190-3199.
    Zwighaft, Z., Aviram, R., Shalev, M., Rousso-Noori, L., Kraut-Cohen, J., Golik, M., Brandis, A., Reinke, H., Aharoni, A., Kahana, C. et al., 2015. Circadian clock control by polyamine levels through a mechanism that declines with age. Cell Metab. 22, 874-885.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return