9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 11
Nov.  2025
Turn off MathJax
Article Contents

Amyloid-β oligomers drive amyloid deposit and cascaded tau pathology of Alzheimer's disease in aged brains of non-human primates

doi: 10.1016/j.jgg.2025.02.007
Funds:

This work was supported in part by the National Key Basic Research and Development Program of China (2019YFA0801402, 2018YFA0107200, 2018YFA0801402, 2018YFA0800100), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16020501 and XDA16020404), and the National Natural Science Foundation of China (32130030, 31900454, 32470866, 32471010, 32100800).

  • Received Date: 2024-10-31
  • Accepted Date: 2025-02-17
  • Rev Recd Date: 2025-02-17
  • Publish Date: 2025-02-25
  • Alzheimer's disease (AD), the most prevalent form of dementia, disproportionately affects the elderly population. While aging is widely recognized as a major risk factor for AD, the precise mechanisms by which aging contributes to the pathogenesis of AD remain poorly understood. In our previous work, the neuropathological changes in the brains of aged cynomolgus monkeys (≥18 years old) following parenchymal cerebral injection of amyloid-β oligomers (AβOs) have been characterized. Here, we extend our investigation to middle-aged cynomolgus monkeys (≤15 years old) to establish an AD model. Surprisingly, immunohistochemical analysis reveals no detectable AD-related pathology in the brains of middle-aged monkeys, even after AβOs injection. In a comprehensive pathological analysis of 38 monkeys, we observe that the amyloid-β (Aβ) burden increases significantly with advancing age. Notably, the density of Aβ plaques is markedly higher in the ventral regions compared with the dorsal regions of aged monkey brains. Furthermore, we demonstrate that tau phosphorylation coincides with the accumulation of extensive Aβ plaques and exhibits a positive correlation with Aβ burden in aged monkeys. Collectively, these findings underscore the critical role of the aged brain in providing the necessary conditions for AβO-induced AD pathologies in cynomolgus monkeys.
  • loading
  • Alzheimer’s Association Report 2023, 2023. Alzheimer's disease facts and figures. Alzheimers Dement. 19, 1598-1695.
    Beckman, D., Chakrabarty, P., Ott, S., Dao, A., Zhou, E., Janssen, W.G., Donis-Cox, K., Muller, S., Kordower, J.H., Morrison, J.H., 2021. A novel tau-based rhesus monkey model of Alzheimer's pathogenesis. Alzheimers Dement. 17, 933-945.
    Beckman, D., Diniz, G.B., Ott, S., Hobson, B., Chaudhari, A.J., Muller, S., Chu, Y., Takano, A., Schwarz, A.J., Yeh, C.L., et al., 2024. Temporal progression of tau pathology and neuroinflammation in a rhesus monkey model of Alzheimer's disease. Alzheimers Dement. 20, 5198-5219.
    Beckman, D., Ott, S., Donis-Cox, K., Janssen, W.G., Bliss-Moreau, E., Rudebeck, P.H., Baxter, M.G., Morrison, J.H., 2019. Oligomeric Aβ in the monkey brain impacts synaptic integrity and induces accelerated cortical aging. Proc. Natl. Acad. Sci. U. S. A. 116, 26239-26246.
    Belfiore, R., Rodin, A., Ferreira, E., Velazquez, R., Branca, C., Caccamo, A., Oddo, S., 2019. Temporal and regional progression of Alzheimer's disease-like pathology in 3xTg-AD mice. Aging Cell 18, e12873.
    Braak, H., Braak, E., 1991. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239-259.
    Busche, M.A., Hyman, B.T., 2020. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 23, 1183-1193.
    Calabrese, E., Badea, A., Coe, C.L., Lubach, G.R., Shi, Y., Styner, M.A., Johnson, G.A., 2015. A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 117, 408-416.
    Cramer, P.E., Gentzel, R.C., Tanis, K.Q., Vardigan, J., Wang, Y., Connolly, B., Manfre, P., Lodge, K., Renger, J.J., Zerbinatti, C., et al., 2018. Aging African green monkeys manifest transcriptional, pathological, and cognitive hallmarks of human Alzheimer's disease. Neurobiol. Aging 64, 92-106.
    Drummond, E., Wisniewski, T., 2017. Alzheimer’s disease: experimental models and reality. Acta Neuropathol 133, 155–175.
    Edler, M.K., Sherwood, C.C., Meindl, R.S., Hopkins, W.D., Ely, J.J., Erwin, J.M., Mufson, E.J., Hof, P.R., Raghanti, M.A., 2017. Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease. Neurobiol. Aging 59, 107-120.
    Forny-Germano, L., Lyra e Silva, N.M., Batista, A.F., Brito-Moreira, J., Gralle, M., Boehnke, S.E., Coe, B.C., Lablans, A., Marques, S.A., Martinez, A.M., et al., 2014. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J. Neurosci. 34, 13629-13643.
    Freire-Cobo, C., Edler, M.K., Varghese, M., Munger, E., Laffey, J., Raia, S., In, S.S., Wicinski, B., Medalla, M., Perez, S.E., et al., 2021. Comparative neuropathology in aging primates: A perspective. Am. J. Primatol. 83, e23299.
    Gail Canter, R., Huang, W.C., Choi, H., Wang, J., Ashley Watson, L., Yao, C.G., Abdurrob, F., Bousleiman, S.M., Young, J.Z., Bennett, D.A., et al., 2019. 3D mapping reveals network-specific amyloid progression and subcortical susceptibility in mice. Commun. Biol. 2, 360.
    Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., et al., 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523-527.
    Gao, F., Lv, X., Dai, L., Wang, Q., Wang, P., Cheng, Z., Xie, Q., Ni, M., Wu, Y., Chai, X., et al., 2023. A combination model of AD biomarkers revealed by machine learning precisely predicts Alzheimer's dementia: China Aging and Neurodegenerative Initiative (CANDI) study. Alzheimers Dement. 19, 749-760.
    Haass, C., Selkoe, D.J., 2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Bio. 8, 101-112.
    Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S.H., Villemagne, V.L., Aisen, P., Vendruscolo, M., Iwatsubo, T., et al., 2021. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatr. 26, 5481-5503.
    Holcomb, L., Gordon, M.N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., Wright, K., Saad, I., Mueller, R., Morgan, D., et al., 1998. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4, 97-100.
    Hong, W., Wang, Z., Liu, W., O’Malley, T.T., Jin, M., Willem, M., Haass, C., Frosch, M.P., Walsh, D.M., 2018. Diffusible, highly bioactive oligomers represent a critical minority of soluble Aβ in Alzheimer’s disease brain. Acta Neuropathol. 136, 19-40.
    Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L., Bohr, V.A., 2019. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565-581.
    Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., Cole, G., 1996. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99-102.
    Jiang, Z., Wang, J., Qin, Y., Liu, S., Luo, B., Bai, F., Wei, H., Zhang, S., Wei, J., Ding, G., et al., 2024. A nonhuman primate model with Alzheimer's disease-like pathology induced by hippocampal overexpression of human tau. Alzheimers Res. Ther. 16, 22.
    King, A., 2018. The search for better animal models of Alzheimer's disease. Nature 559, S13-S15.
    LaFerla, F.M., Green, K.N., 2012. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006320.
    Long, J.M., Holtzman, D.M., 2019. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312-339.
    Masters, C.L., Bateman, R., Blennow, K., Rowe, C.C., Sperling, R.A., Cummings, J.L., 2015. Alzheimer's disease. Nat. Rev. Dis. Primers 1, 15056.
    Mattsson, N., Palmqvist, S., Stomrud, E., Vogel, J., Hansson, O., 2019. Staging β-amyloid pathology with amyloid positron emission tomography. JAMA Neurol. 76, 1319-1329.
    Mc Donald, J.M., O'Malley, T.T., Liu, W., Mably, A.J., Brinkmalm, G., Portelius, E., Wittbold, W.M., 3rd, Frosch, M.P., Walsh, D.M., 2015. The aqueous phase of Alzheimer's disease brain contains assemblies built from ∼4 and ∼7 kDa Aβ species. Alzheimers Dement. 11, 1286-1305.
    Miller, E.K., Cohen, J.D., 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167-202.
    Mucke, L., Masliah, E., Yu, G.-Q., Mallory, M., Rockenstein, E.M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., McConlogue, L., 2000. High-level neuronal expression of Aβ1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050-4058.
    O'Brien, R.J., Wong, P.C., 2011. Amyloid precursor protein processing and Alzheimer's disease. Annu. Rev. Neurosci. 34, 185-204.
    Oakley, H., Cole, S.L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., et al., 2006. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129-10140.
    Oikawa, N., Kimura, N., Yanagisawa, K., 2010. Alzheimer-type tau pathology in advanced aged nonhuman primate brains harboring substantial amyloid deposition. Brain Res. 1315, 137-149.
    Pan, M.T., Zhang, H., Li, X.J., Guo, X.Y., 2024. Genetically modified non-human primate models for research on neurodegenerative diseases. Zool. Res. 45, 263-274.
    Podlisny, M.B., Tolan, D.R., Selkoe, D.J., 1991. Homology of the amyloid β protein precursor in monkey and human supports a primate model for β amyloidosis in Alzheimer's disease. Am. J. Pathol. 138, 1423-1435.
    Reardon, S., 2018. Frustrated Alzheimer's researchers seek better lab mice. Nature 563, 611-612.
    Serrano-Pozo, A., Frosch, M.P., Masliah, E., Hyman, B.T., 2011. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189.
    Shankar, G.M., Li, S., Mehta, T.H., Garcia-Munoz, A., Shepardson, N.E., Smith, I., Brett, F.M., Farrell, M.A., Rowan, M.J., Lemere, C.A., et al., 2008. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837-842.
    Stine, W.B., Jr., Dahlgren, K.N., Krafft, G.A., LaDu, M.J., 2003. In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J. Biol. Chem. 278, 11612-11622.
    Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K.H., Mistl, C., Rothacher, S., Ledermann, B., Burki, K., Frey, P., Paganetti, P.A., et al., 1997. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc .Natl. Acad. Sci. U. S. A. 94, 13287-13292.
    Thal, D.R., Rub, U., Orantes, M., Braak, H., 2002. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791-1800.
    Therriault, J., Zimmer, E.R., Benedet, A.L., Pascoal, T.A., Gauthier, S., Rosa-Neto, P., 2022. Staging of Alzheimer's disease: past, present, and future perspectives. Trends Mol. Med. 28, 726-741.
    Trejo-Lopez, J.A., Yachnis, A.T., Prokop, S., 2022. Neuropathology of Alzheimer's Disease. Neurotherapeutics 19, 173-185.
    Tu, Z., Yan, S., Han, B., Li, C., Liang, W., Lin, Y., Ding, Y., Wei, H., Wang, L., Xu, H., et al., 2023. Tauopathy promotes spinal cord-dependent production of toxic amyloid-β in transgenic monkeys. Signal Transduct. Target Ther. 8, 358.
    Tu, Z., Yang, W., Yan, S., Guo, X., Li, X.J., 2015. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol. Neurodegener. 10, 35.
    van der Flier, W.M., Scheltens, P., 2022. The ATN framework-moving preclinical Alzheimer disease to clinical relevance. JAMA Neurol. 79, 968-970.
    Viola, K.L., Klein, W.L., 2015. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 129, 183-206.
    Wang, Z., Jin, M., Hong, W., Liu, W., Reczek, D., Lagomarsino, V.N., Hu, Y., Weeden, T., Frosch, M.P., Young-Pearse, T.L., et al., 2023. Learnings about Aβ from human brain recommend the use of a live-neuron bioassay for the discovery of next generation Alzheimer’s disease immunotherapeutics. Acta Neuropathol. Commun. 11, 39.
    Winblad, B., Amouyel, P., Andrieu, S., Ballard, C., Brayne, C., Brodaty, H., Cedazo-Minguez, A., Dubois, B., Edvardsson, D., Feldman, H., et al., 2016. Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurol. 15, 455-532.
    Yao, Y.G., 2022. Towards the peak: the 10-year journey of the National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility) and a call for international collaboration in non-human primate research. Zool. Res. 43, 237-240.
    Yue, F., Feng, S., Lu, C., Zhang, T., Tao, G., Liu, J., Yue, C., Jing, N., 2021. Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer's disease in nonhuman primates. iScience 24, 103207.
    Zhang, H., Wei, W., Zhao, M., Ma, L., Jiang, X., Pei, H., Cao, Y., Li, H., 2021. Interaction between Aβ and Tau in the pathogenesis of Alzheimer's disease. Int. J. Biol. Sci. 17, 2181-2192.
    Zhong, M.Z., Peng, T., Duarte, M.L., Wang, M., Cai, D., 2024. Updates on mouse models of Alzheimer's disease. Mol. Neurodegener. 19, 23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (59) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return