|
An, Y.-q.C., Goettel, W., Han, Q., Bartels, A., Liu, Z., Xiao, W., 2017. Dynamic changes of genome-wide DNA methylation during soybean seed development. Sci. Rep. 7, 12263.
|
|
Bai, M., Yuan, J., Kuang, H., Gong, P., Li, S., Zhang, Z., Liu, B., Sun, J., Yang, M., Yang, L., et al., 2020. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol. J. 18, 721-731.
|
|
Bolon, Y.-T., Haun, W.J., Xu, W.W., Grant, D., Stacey, M.G., Nelson, R.T., Gerhardt, D.J., Jeddeloh, J.A., Stacey, G., Muehlbauer, G.J., et al., 2011. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol. 156, 240-253.
|
|
Cao, L., Yu, Y., DuanMu, H., Chen, C., Duan, X., Zhu, P., Chen, R., Li, Q., Zhu, Y., Ding, X., 2016. A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis. BMC Plant Biol. 16, 1-14.
|
|
Carter, T., Hymowitz, T., Nelson, R., 2004. Biogeography, local adaptation, Vavilov, and genetic diversity in soybean, in: Werner, D. (Ed.) Biological Resources and Migration. Springer, Berlin, Heidelberg, pp. 47-59.
|
|
Cervantes-Perez, S.A., Zogli, P., Amini, S., Thibivilliers, S., Tennant, S., Hossain, M.S., Xu, H., Meyer, I., Nooka, A., Ma, P., et al., 2024. Single-cell transcriptome atlases of soybean root and mature nodule reveal new regulatory programs controlling the nodulation process. Plant Commun. 5, 100984.
|
|
Chen, Y., Nelson, R.L., 2004. Genetic variation and relationships among cultivated, wild, and semiwild soybean. Crop Sci. 44, 316-325.
|
|
Cui, Y., Barampuram, S., Stacey, M.G., Hancock, C.N., Findley, S., Mathieu, M., Zhang, Z., Parrott, W.A., Stacey, G., 2013. Tnt1 retrotransposon mutagenesis: a tool for soybean functional genomics. Plant Physiol. 161, 36-47.
|
|
Diers, B.W., Keim, P., Fehr, W., Shoemaker, R., 1992. RFLP analysis of soybean seed protein and oil content. Theor. Appl. Genet. 83, 608-612.
|
|
Diez, C.M., Roessler, K., Gaut, B.S., 2014. Epigenetics and plant genome evolution. Curr. Opin. Plant Biol. 18, 1-8.
|
|
Dong, Y., Yang, X., Liu, J., Wang, B.-H., Liu, B.-L., Wang, Y.-Z., 2014. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat. Commun. 5, 3352.
|
|
Espina, M.J., Ahmed, C.S., Bernardini, A., Adeleke, E., Yadegari, Z., Arelli, P., Pantalone, V., Taheri, A., 2018. Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean. Front. Plant Sci. 9, 394.
|
|
Espina, M.J.C., Lovell, J.T., Jenkins, J., Shu, S., Sreedasyam, A., Jordan, B.D., Webber, J., Boston, L., Bruna, T., Talag, J., et al., 2024. Assembly, comparative analysis, and utilization of a single haplotype reference genome for soybean. Plant J. 120, 1221-1235.
|
|
Fang, C., Li, W., Li, G., Wang, Z., Zhou, Z., Ma, Y., Shen, Y., Li, C., Wu, Y., Zhu, B., et al., 2013. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J. Genet. Genomics 40, 93-96.
|
|
Fang, C., Ma, Y., Wu, S., Liu, Z., Wang, Z., Yang, R., Hu, G., Zhou, Z., Yu, H., Zhang, M., et al., 2017. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 18, 1-14.
|
|
Fang, C., Yang, M., Tang, Y., Zhang, L., Zhao, H., Ni, H., Chen, Q., Meng, F., Jiang, J., 2023. Dynamics of cis-regulatory sequences and transcriptional divergence of duplicated genes in soybean. Proc. Natl. Acad. Sci. U. S. A 120, e2303836120.
|
|
Fei, S., Hassan, M.A., Xiao, Y., Rasheed, A., Xia, X., Ma, Y., Fu, L., Chen, Z., He, Z., 2022. Application of multi-layer neural network and hyperspectral reflectance in genome-wide association study for grain yield in bread wheat. Field Crops Res. 289, 108730.
|
|
Feng, P., Sun, X., Liu, X., Li, Y., Sun, Q., Lu, H., Li, M., Ding, X., Dong, Y., 2022. Epigenetic regulation of plant tolerance to salt stress by histone acetyltransferase GsMYST1 from wild soybean. Front. Plant Sci. 13, 860056.
|
|
Funatsuki, H., Suzuki, M., Hirose, A., Inaba, H., Yamada, T., Hajika, M., Komatsu, K., Katayama, T., Sayama, T., Ishimoto, M., et al., 2014. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc. Natl. Acad. Sci. U. S. A 111, 17797-17802.
|
|
Garg, V., Khan, A.W., Fengler, K., Llaca, V., Yuan, Y., Vuong, T.D., Harris, C., Chan, T.F., Lam, H.M., Varshney, R.K., et al., 2023. Near-gapless genome assemblies of Williams 82 and Lee cultivars for accelerating global soybean research. Plant Genome 16, e20382.
|
|
Gepts, P., Papa, R., 2003. Possible effects of (trans) gene flow from crops on the genetic diversity from landraces and wild relatives. Environ. Biosaf. Res. 2, 89-103.
|
|
Gu, X., Ding, J., Liu, W., Yang, X., Yao, L., Gao, X., Zhang, M., Yang, S., Wen, J., 2020. Comparative genomics and association analysis identifies virulence genes of Cercospora sojina in soybean. BMC Genom. 21, 1-17.
|
|
Hesler, L.S., 2013. Resistance to soybean aphid among wild soybean lines under controlled conditions. Crop Prot. 53, 139-146.
|
|
Hu, Y., Liu, Y., Lu, L., Tao, J.J., Cheng, T., Jin, M., Wang, Z.Y., Wei, J.J., Jiang, Z.H., Sun, W.C., et al., 2023. Global analysis of seed transcriptomes reveals a novel PLATZ regulator for seed size and weight control in soybean. New Phytol. 240, 2436-2454.
|
|
Huang, M.-K., Zhang, L., Zhou, L.-M., Yung, W.-S., Li, M.-W., Lam, H.-M., 2021. Genomic features of open chromatin regions (OCRs) in wild soybean and their effects on gene expressions. Genes-Basel 12, 640.
|
|
Huang, M., Zhang, L., Yung, W.-S., Hu, Y., Wang, Z., Li, M.-W., Lam, H.-M., 2023. Molecular evidence for enhancer-promoter interactions in light responses of soybean seedlings. Plant Physiol. 193, 2287-2291.
|
|
Huang, M., Zhang, L., Zhou, L., Yung, W.-S., Wang, Z., Xiao, Z., Wang, Q., Wang, X., Li, M.-W., Lam, H.-M., 2022. Identification of the accessible chromatin regions in six tissues in the soybean. Genomics 114, 110364.
|
|
Huang, Y., Koo, D.-H., Mao, Y., Herman, E.M., Zhang, J., Schmidt, M.A., 2024. A complete reference genome for the soybean cv. Jack. Plant Commun. 5, 100984.
|
|
Hyten, D.L., Song, Q., Zhu, Y., Choi, I.-Y., Nelson, R.L., Costa, J.M., Specht, J.E., Shoemaker, R.C., Cregan, P.B., 2006. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. U. S. A 103, 16666-16671.
|
|
Jeong, N., Suh, S.J., Kim, M.-H., Lee, S., Moon, J.-K., Kim, H.S., Jeong, S.-C., 2012. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell 24, 4807-4818.
|
|
Ji, W., Zhu, Y., Li, Y., Yang, L., Zhao, X., Cai, H., Bai, X., 2010. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol. Lett. 32, 1173-1179.
|
|
Jia, K.-H., Zhang, X., Li, L.-L., Shi, T.-L., Liu, D., Yang, Y., Cong, Y., Li, R., Pu, Y., Gong, Y., et al., 2024. Telomere-to-telomere genome assemblies of cultivated and wild soybean provide insights into evolution and domestication under structural variation. Plant Commun. 5, 100919.
|
|
Joshi, T., Valliyodan, B., Wu, J.-H., Lee, S.-H., Xu, D., Nguyen, H.T., 2013. Genomic differences between cultivated soybean, G. max and its wild relative G. soja. BMC Genom. 14, 1-11.
|
|
Kim, M.-S., Lozano, R., Kim, J.H., Bae, D.N., Kim, S.-T., Park, J.-H., Choi, M.S., Kim, J., Ok, H.-C., Park, S.-K., et al., 2021. The patterns of deleterious mutations during the domestication of soybean. Nat. Commun. 12, 97.
|
|
Kim, M.Y., Lee, S., Van, K., Kim, T.-H., Jeong, S.-C., Choi, I.-Y., Kim, D.-S., Lee, Y.-S., Park, D., Ma, J., et al., 2010. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc. Natl. Acad. Sci. U. S. A 107, 22032-22037.
|
|
Kim, M.Y., Van, K., Kang, Y.J., Kim, K.H., Lee, S.-H., 2012. Tracing soybean domestication history: from nucleotide to genome. Breed. Sci. 61, 445-452.
|
|
King, C.A., Purcell, L.C., Brye, K.R., 2009. Differential wilting among soybean genotypes in response to water deficit. Crop Sci. 49, 290-298.
|
|
Koshika, N., Shioya, N., Fujimura, T., Oguchi, R., Ota, C., Kato, E., Takahashi, R., Kimura, S., Furuno, S., Saito, K., et al., 2022. Development of ethyl methanesulfonate mutant edamame soybean (Glycine max (L.) Merr.) populations and forward and reverse genetic screening for early-flowering mutants. Plants 11, 1839.
|
|
Kunert, K., Vorster, B.J., 2020. In search for drought-tolerant soybean: is the slow-wilting phenotype more than just a curiosity? J. Exp. Bot. 71, 457-460.
|
|
Lam, H.-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.-L., Li, M.-W., He, W., Qin, N., Wang, B., et al., 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42, 1053-1059.
|
|
Leamy, L.J., Zhang, H., Li, C., Chen, C.Y., Song, B.-H., 2017. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genom. 18, 1-15.
|
|
Lee, Y.G., Jeong, N., Kim, J.H., Lee, K., Kim, K.H., Pirani, A., Ha, B.K., Kang, S.T., Park, B.S., Moon, J.K., et al., 2015. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J. 81, 625-636.
|
|
Li, Y., Guan, R., Liu, Z., Ma, Y., Wang, L., Li, L., Lin, F., Luan, W., Chen, P., Yan, Z., et al., 2008. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor. Appl. Genet. 117, 857-871.
|
|
Li, Y.-h., Zhou, G., Ma, J., Jiang, W., Jin, L.-g., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., et al., 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045-1052.
|
|
Li, X., Wang, Y., Liu, F., Pi, B., Zhao, T., Yu, B., 2020. Transcriptomic analysis of Glycine soja and G. max seedlings and functional characterization of GsGSTU24 and GsGSTU42 genes under submergence stress. Environ. Exp. Bot. 171, 103963.
|
|
Li, J., Zhang, Y., Ma, R., Huang, W., Hou, J., Fang, C., Wang, L., Yuan, Z., Sun, Q., Dong, X., et al., 2022a. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnol. J. 20, 1110-1121.
|
|
Li, Y.F., Li, Y.H., Su, S.S., Reif, J.C., Qi, Z.M., Wang, X.B., Wang, X., Tian, Y., Li, D.L., Sun, R.J., et al., 2022b. SoySNP618K array: a high-resolution single nucleotide polymorphism platform as a valuable genomic resource for soybean genetics and breeding. J. Integr. Plant Biol. 64, 632-648.
|
|
Li, Y.-H., Qin, C., Wang, L., Jiao, C., Hong, H., Tian, Y., Li, Y., Xing, G., Wang, J., Gu, Y., et al., 2023. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci. China Life Sci. 66, 350-365.
|
|
Li, Z., Sun, L., Xu, X., Liu, Y., He, H., Deng, X.W., 2024. Light control of three-dimensional chromatin organization in soybean. Plant Biotechnol. J. 22, 2596-2611.
|
|
Lin, J.-Y., Le, B.H., Chen, M., Henry, K.F., Hur, J., Hsieh, T.-F., Chen, P.-Y., Pelletier, J.M., Pellegrini, M., Fischer, R.L., et al., 2017. Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. Proc. Natl. Acad. Sci. U. S. A 114, 9730-9739.
|
|
Liu, H., Song, J., Dong, L., Wang, D., Zhang, S., Liu, J., 2017. Physiological responses of three soybean species (Glycine soja, G. gracilis, and G. max cv. Melrose) to salinity stress. J. Plant Res. 130, 723-733.
|
|
Liu, Z., Li, H., Wen, Z., Fan, X., Li, Y., Guan, R., Guo, Y., Wang, S., Wang, D., Qiu, L., 2017b. Comparison of genetic diversity between Chinese and American soybean (Glycine max (L.)) accessions revealed by high-density SNPs. Front. Plant Sci. 8, 2014.
|
|
Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., et al., 2020. Pan-genome of wild and cultivated soybeans. Cell 182, 162-176.
|
|
Liu, Y., Liu, S., Zhang, Z., Ni, L., Chen, X., Ge, Y., Zhou, G., Tian, Z., 2022. GenoBaits Soy40K: a highly flexible and low-cost SNP array for soybean studies. Sci. China Life Sci. 65, 1898-1901.
|
|
Liu, Z., Kong, X., Long, Y., Liu, S., Zhang, H., Jia, J., Cui, W., Zhang, Z., Song, X., Qiu, L., et al., 2023. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat. Plants 9, 515-524.
|
|
Lu, S., Dong, L., Fang, C., Liu, S., Kong, L., Cheng, Q., Chen, L., Su, T., Nan, H., Zhang, D., et al., 2020. Stepwise selection on homoeologous PRR genes controlling flowering and maturity during soybean domestication. Nat. Genet. 52, 428-436.
|
|
Lyu, X., Li, Y.-h., Li, Y., Li, D., Han, C., Hong, H., Tian, Y., Han, L., Liu, B., Qiu, L.-j., 2023. The domestication-associated L1 gene encodes a eucomic acid synthase pleiotropically modulating pod pigmentation and shattering in soybean. Mol. Plant 16, 1178-1191.
|
|
Ma, J., Cannon, S., Jackson, S.A., Shoemaker, R.C., 2010. Soybean comparative genomics, in: Bilyeu, K., Ratnaparkhe, M.B., Kole, C. (Eds.), Genetics, Genomics, and Breeding of Soybean. Science Publishers, p. 245.
|
|
Ma, C., Xin, M., Feldmann, K.A., Wang, X., 2014. Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis. Plant Cell 26, 520-537.
|
|
Machado, F.B., Moharana, K.C., Almeida-Silva, F., Gazara, R.K., Pedrosa-Silva, F., Coelho, F.S., Grativol, C., Venancio, T.M., 2020. Systematic analysis of 1298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas. Plant J. 103, 1894-1909.
|
|
Marand, A.P., Eveland, A.L., Kaufmann, K., Springer, N.M., 2023. cis-Regulatory elements in plant development, adaptation, and evolution. Annu. Rev. Plant Biol. 74, 111-137.
|
|
Mathieu, M., Winters, E.K., Kong, F., Wan, J., Wang, S., Eckert, H., Luth, D., Paz, M., Donovan, C., Zhang, Z., et al., 2009. Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository. Planta 229, 279-289.
|
|
Nawaz, M.A., Yang, S.H., Chung, G., 2018. Wild soybeans: an opportunistic resource for soybean improvement, in: Grillo, O. (Ed.) Rediscovery of Landraces as a Resource for the Future. IntechOpen.
|
|
Ni, L., Liu, Y., Ma, X., Liu, T., Yang, X., Wang, Z., Liang, Q., Liu, S., Zhang, M., Wang, Z., et al., 2023. Pan-3D genome analysis reveals structural and functional differentiation of soybean genomes. Genome Biol. 24, 12.
|
|
Ning, W., Zhai, H., Yu, J., Liang, S., Yang, X., Xing, X., Huo, J., Pang, T., Yang, Y., Bai, X., 2017. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Mol. Breed. 37, 1-10.
|
|
Nisa, Z.-u., Mallano, A.I., Yu, Y., Chen, C., Duan, X., Amanullah, S., Kousar, A., Baloch, A.W., Sun, X., Tabys, D., et al., 2017. GsSNAP33, a novel Glycine soja SNAP25-type protein gene: improvement of plant salt and drought tolerances in transgenic Arabidopsis thaliana. Plant Physiol. Biochem. 119, 9-20.
|
|
Niu, Y., Yung, W.-S., Sze, C.-C., Wong, F.-L., Li, M.-W., Chung, G., Lam, H.-M., 2024. Developing an SNP dataset for efficiently evaluating soybean germplasm resources using the genome sequencing data of 3,661 soybean accessions. BMC Genom. 25, 475.
|
|
Oki, N., Kaga, A., Shimizu, T., Takahashi, M., Kono, Y., Takahashi, M., 2017. QTL mapping of antixenosis resistance to common cutworm (Spodoptera litura Fabricius) in wild soybean (Glycine soja). PLoS One 12, e0189440.
|
|
Pi, B., Liu, X., Huang, Q., Zhang, T., Yu, B., 2023. Comparative transcriptomic analysis of Glycine soja and G. max and functional identification of GsCNGC20-d interacted with GsCDPK29 under salt stress. Environ. Exp. Bot. 206, 105185.
|
|
Pombo, A., Dillon, N., 2015. Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245-257.
|
|
Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., et al., 2010. Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183.
|
|
Seversike, T.M., Sermons, S.M., Sinclair, T.R., Carter, T.E., Rufty, T.W., 2014. Physiological properties of a drought-resistant wild soybean genotype: transpiration control with soil drying and expression of root morphology. Plant Soil 374, 359-370.
|
|
Shaw, R., Tian, X., Xu, J., 2021. Single-cell transcriptome analysis in plants: advances and challenges. Mol. Plant 14, 115-126.
|
|
Shen, x., Wang, y., Zhang, y., Guo, w., Jiao, y., Zhou, x., 2018a. Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis. Int. J. Mol. Sci. 19, 3958.
|
|
Shen, Y., Zhang, J., Liu, Y., Liu, S., Liu, Z., Duan, Z., Wang, Z., Zhu, B., Guo, Y.-L., Tian, Z., 2018b. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 19, 1-14.
|
|
Song, Y., Ji, D., Li, S., Wang, P., Li, Q., Xiang, F., 2012. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7, e41274.
|
|
Song, Q.-X., Lu, X., Li, Q.-T., Chen, H., Hu, X.-Y., Ma, B., Zhang, W.-K., Chen, S.-Y., Zhang, J.-S., 2013a. Genome-wide analysis of DNA methylation in soybean. Mol. Plant 6, 1961-1974.
|
|
Song, Q., Hyten, D.L., Jia, G., Quigley, C.V., Fickus, E.W., Nelson, R.L., Cregan, P.B., 2013b. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8, e54985.
|
|
Song, Q., Hyten, D.L., Jia, G., Quigley, C.V., Fickus, E.W., Nelson, R.L., Cregan, P.B., 2015. Fingerprinting soybean germplasm and its utility in genomic research. G3-Genes. Genom. Genet. 5, 1999-2006.
|
|
Song, S., Wang, J., Zhou, J., Cheng, X., Hu, Y., Wang, J., Zou, J., Zhao, Y., Liu, C., Hu, Z., et al., 2024. Single-cell RNA-sequencing of soybean reveals transcriptional changes and antiviral functions of GmGSTU23 and GmGSTU24 in response to soybean mosaic virus. Plant Cell Environ.
|
|
Song, Q., Yan, L., Quigley, C., Fickus, E., Wei, H., Chen, L., Dong, F., Araya, S., Liu, J., Hyten, D., et al., 2020. Soybean BARCSoySNP6K: an assay for soybean genetics and breeding research. Plant J. 104, 800-811.
|
|
Stepinski, D., 2012. Levels of DNA methylation and histone methylation and acetylation change in root tip cells of soybean seedlings grown at different temperatures. Plant Physiol. Biochem. 61, 9-17.
|
|
Sun, X., Sun, M., Luo, X., Ding, X., Ji, W., Cai, H., Bai, X., Liu, X., Zhu, Y., 2013. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta 237, 1527-1545.
|
|
Sun, L., Miao, Z., Cai, C., Zhang, D., Zhao, M., Wu, Y., Zhang, X., Swarm, S.A., Zhou, L., Zhang, Z.J., et al., 2015. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat. Genet. 47, 939-943.
|
|
Sun, B., Wang, Y., Yang, Q., Gao, H., Niu, H., Li, Y., Ma, Q., Huan, Q., Qian, W., Ren, B., 2023. A high-resolution transcriptomic atlas depicting nitrogen fixation and nodule development in soybean. J. Integr. Plant Biol. 65, 1536-1552.
|
|
Taliercio, E., Gillenwater, J., Woodruff, L., Fallen, B., 2024. Glycine soja, PI424025, is a valuable genetic resource to improve soybean seed-protein content and composition. PLoS One 19, e0310544.
|
|
Tang, L., Cai, H., Zhai, H., Luo, X., Wang, Z., Cui, L., Bai, X., 2014. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue Organ Cult. 118, 77-86.
|
|
Tripodi, P., Nicastro, N., Pane, C., Cammarano, D., 2022. Digital applications and artificial intelligence in agriculture toward next-generation plant phenotyping. Crop Pasture Sci.
|
|
Wang, J., Chu, S., Zhang, H., Zhu, Y., Cheng, H., Yu, D., 2016. Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci. Rep. 6, 20728.
|
|
Wang, M., Li, W., Fang, C., Xu, F., Liu, Y., Wang, Z., Yang, R., Zhang, M., Liu, S., Lu, S., et al., 2018a. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 50, 1435-1441.
|
|
Wang, Y., Li, Y., Wu, H., Hu, B., Zheng, J., Zhai, H., Lv, S., Liu, X., Chen, X., Qiu, H., et al., 2018b. Genotyping of soybean cultivars with medium-density array reveals the population structure and QTNs underlying maturity and seed traits. Front. Plant Sci. 9, 610.
|
|
Wang, S., Liu, S., Wang, J., Yokosho, K., Zhou, B., Yu, Y.-C., Liu, Z., Frommer, W.B., Ma, J.F., Chen, L.-Q., et al., 2020. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl. Sci. Rev. 7, 1776-1786.
|
|
Wang, L., Jia, G., Jiang, X., Cao, S., Chen, Z.J., Song, Q., 2021. Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. Plant Cell 33, 1430-1446.
|
|
Wang, L., Zhang, M., Li, M., Jiang, X., Jiao, W., Song, Q., 2023. A telomere-to-telomere gap-free assembly of soybean genome. Mol. Plant 16, 1711-1714.
|
|
Wang, Q., Zhang, W., Xu, W., Zhang, H., Liu, X., Chen, X., Chen, H., 2024. Genome-wide association study and identification of candidate genes associated with seed number per pod in soybean. Int. J. Mol. Sci. 25, 2536.
|
|
Wilson, R.F., 2008. Soybean: market driven research needs, in: Stacey, G. (Ed.) Genetics and Genomics of Soybean. Springer, pp. 3-15.
|
|
Wu, C., Luo, J., Xiao, Y., 2024. Multi-omics assists genomic prediction of maize yield with machine learning approaches. Mol. Breed. 44, 14.
|
|
Xie, M., Chung, C.Y.-L., Li, M.-W., Wong, F.-L., Wang, X., Liu, A., Wang, Z., Leung, A.K.-Y., Wong, T.-H., Tong, S.-W., et al., 2019. A reference-grade wild soybean genome. Nat. Commun. 10, 1216.
|
|
Yang, L., Wu, K., Gao, P., Liu, X., Li, G., Wu, Z., 2014. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance. Plant Sci. 215, 19-28.
|
|
Yu, Y., Duan, X., Ding, X., Chen, C., Zhu, D., Yin, K., Cao, L., Song, X., Zhu, P., Li, Q., et al., 2017. A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. Plant Mol. Biol. 94, 509-530.
|
|
Yuan, X., Jiang, X., Zhang, M., Wang, L., Jiao, W., Chen, H., Mao, J., Ye, W., Song, Q., 2024. Integrative omics analysis elucidates the genetic basis underlying seed weight and oil content in soybean. Plant Cell 36, 2160-2175.
|
|
Yung, W.S., Wang, Q., Chan, L.Y., Wang, Z., Huang, M., Li, M.W., Wong, F.L., Lam, H.M., 2024. DNA hypomethylation is one of the epigenetic mechanisms involved in salt-stress priming in soybean seedlings. Plant Cell Environ.
|
|
Yung, W.S., Wang, Q., Huang, M., Wong, F.L., Liu, A., Ng, M.S., Li, K.P., Sze, C.C., Li, M.W., Lam, H.M., 2022. Priming-induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress. Plant J. 109, 1575-1590.
|
|
Zeb, A., 2021. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res. Int. 143, 110312.
|
|
Zhang, H.Y., Song, Q.J., Griffin, J.D., Song, B.H., 2017. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines). Mol. Genet. Genom. 292, 1257-1265.
|
|
Zhang, M., Zhang, X., Jiang, X., Qiu, L., Jia, G., Wang, L., Ye, W., Song, Q., 2022. iSoybean: a database for the mutational fingerprints of soybean. Plant Biotechnol. J. 20, 1435.
|
|
Zhang, C., Xie, L., Yu, H., Wang, J., Chen, Q., Wang, H., 2023. The T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. Mol. Plant 16, 1715-1718.
|
|
Zhang, X., Luo, Z., Marand, A.P., Yan, H., Jang, H., Bang, S., Mendieta, J.P., Minow, M.A., Schmitz, R.J., 2024. A spatially resolved multi-omic single-cell atlas of soybean development. Cell 188, 550-567.
|
|
Zhao, B., Zhang, S., Yang, W., Li, B., Lan, C., Zhang, J., Yuan, L., Wang, Y., Xie, Q., Han, J., et al., 2021. Multi-omic dissection of the drought resistance traits of soybean landrace LX. Plant Cell Environ. 44, 1379-1398.
|
|
Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., Yu, Y., Shu, L., Zhao, Y., Ma, Y., et al., 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408-414.
|
|
Zhu, W., Yang, C., Yong, B., Wang, Y., Li, B., Gu, Y., Wei, S., An, Z., Sun, W., Qiu, L., et al., 2022. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. New Phytol. 236, 1375-1392.
|
|
Zhuang, Y., Li, X., Hu, J., Xu, R., Zhang, D., 2022. Expanding the gene pool for soybean improvement with its wild relatives. aBIOTECH 3, 115-125.
|