|
Aizarani, N., Saviano, A., Sagar, Mailly, L., Durand, S., Herman, J.S., Pessaux, P., Baumert, T.F.,Grun, D., 2019. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199-204.
|
|
Andrews, T.S., Atif, J., Liu, J.C., Perciani, C.T., Ma, X.Z., Thoeni, C., Slyper, M., Eraslan, G., Segerstolpe, A.,Manuel, J., 2022. Single-cell, single-nucleus, and spatial rna sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatology Communications 6, 821-840.
|
|
Aran, D., Camarda, R., Odegaard, J., Paik, H., Oskotsky, B., Krings, G., Goga, A., Sirota, M.,Butte, A.J., 2017. Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat. Commun. 8, 1077.
|
|
Barkal, A.A., Brewer, R.E., Markovic, M., Kowarsky, M., Barkal, S.A., Zaro, B.W., Krishnan, V., Hatakeyama, J., Dorigo, O., Barkal, L.J., et al., 2019. Cd24 signalling through macrophage siglec-10 is a target for cancer immunotherapy. Nature 572, 392-396.
|
|
Ben-Moshe, S.,Itzkovitz, S., 2019. Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol. Hepatol. 16, 395-410.
|
|
Ben-Moshe, S., Shapira, Y., Moor, A.E., Manco, R., Veg, T., Bahar Halpern, K.,Itzkovitz, S., 2019. Spatial sorting enables comprehensive characterization of liver zonation. Nat. Metab. 1, 899-911.
|
|
Breiman, L., 2001. Random forests. Mach. Learn. 45, 5-32.
|
|
Brosch, M., Kattler, K., Herrmann, A., von Schonfels, W., Nordstrom, K., Seehofer, D., Damm, G., Becker, T., Zeissig, S., Nehring, S., et al., 2018. Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control. Nat. Commun. 9, 4150.
|
|
Chang, K., Creighton, C.J., Davis, C., Donehower, L., Drummond, J., Wheeler, D., Ally, A., Balasundaram, M., Birol, I., Butterfield, Y.S.N., et al., 2013. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113-1120.
|
|
Chen, T.,Guestrin, C. 2016. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Association for Computing Machinery, San Francisco, California, U.S.A., pp. 785-794.
|
|
Chen, F., Long, Q., Fu, D., Zhu, D., Ji, Y., Han, L., Zhang, B., Xu, Q., Liu, B., Li, Y., et al., 2018. Targeting spink1 in the damaged tumour microenvironment alleviates therapeutic resistance. Nat. Commun. 9, 4315.
|
|
Chen, S., Luo, Y., Gao, H., Li, F., Chen, Y., Li, J., You, R., Hao, M., Bian, H., Xi, X., et al., 2022. Heca: The cell-centric assembly of a cell atlas. iScience 25, 104318.
|
|
Chen, J., Xu, H., Tao, W., Chen, Z., Zhao, Y.,Han, J.-D.J., 2023. Transformer for one stop interpretable cell type annotation. Nat. Commun. 14, 223.
|
|
Chen, Z., Miao, Y., Tan, Z., Hu, Q., Wu, Y., Li, X., Guo, W., Gu, J., 2023. scCancer2: data-driven in-depth annotations of the tumor microenvironment at single-level resolution. Bioinformatics 40, btae028.
|
|
Chu, Y., Dai, E., Li, Y., Han, G., Pei, G., Ingram, D.R., Thakkar, K., Qin, J.-J., Dang, M., Le, X., et al., 2023. Pan-cancer t cell atlas links a cellular stress response state to immunotherapy resistance. Nat. Med. 29, 1550-1562.
|
|
Cortes, C.,Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20, 273-297.
|
|
Crowell, H.L., Soneson, C., Germain, P.-L., Calini, D., Collin, L., Raposo, C., Malhotra, D.,Robinson, M.D., 2020. Muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nat. Commun. 11, 6077.
|
|
Cui, H., Wang, C., Maan, H., Pang, K., Luo, F., Duan, N., Wang, B., 2024. Scgpt: Toward building a foundation model for single-cell multi-omics using generative ai. Nat. Methods 21, 1470–1480.
|
|
Fan, B., Malato, Y., Calvisi, D.F., Naqvi, S., Razumilava, N., Ribback, S., Gores, G.J., Dombrowski, F., Evert, M., Chen, X., et al., 2012. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911-2915.
|
|
Friedman, J., Hastie, T.,Tibshirani, R., 2010. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1-22.
|
|
Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Valiollah Pour Amiri, V., Hong, J., Wu, K., Jayasuriya, M., Mehlman, E., Langevin, M., et al., 2022. A python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163-166.
|
|
Gowhari Shabgah, A., Ezzatifar, F., Aravindhan, S., Olegovna Zekiy, A., Ahmadi, M., Gheibihayat, S.M.,Gholizadeh Navashenaq, J., 2021. Shedding more light on the role of midkine in hepatocellular carcinoma: New perspectives on diagnosis and therapy. IUBMB Life 73, 659-669.
|
|
Guilliams, M., Bonnardel, J., Haest, B., Vanderborght, B., Wagner, C., Remmerie, A., Bujko, A., Martens, L., Thone, T.,Browaeys, R., 2022. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379-396.
|
|
Guo, X., Zhang, Y., Zheng, L., Zheng, C., Song, J., Zhang, Q., Kang, B., Liu, Z., Jin, L., Xing, R., et al., 2018. Global characterization of t cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978-985.
|
|
Guo, W., Wang, D., Wang, S., Shan, Y., Liu, C.,Gu, J., 2020. scCancer: A package for automated processing of single-cell rna-seq data in cancer. Brief. Bioinform. 22, bbaa127.
|
|
Halpern, K.B., Shenhav, R., Matcovitch-Natan, O., Toth, B., Lemze, D., Golan, M., Massasa, E.E., Baydatch, S., Landen, S., Moor, A.E., et al., 2017. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352-356.
|
|
Hanzelmann, S., Castelo, R.,Guinney, J., 2013. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 1-15.
|
|
Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al., 2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.
|
|
Hao, M., Gong, J., Zeng, X., Liu, C., Guo, Y., Cheng, X., Wang, T., Ma, J., Zhang, X., Song, L. 2024. Large scale foundation model on single-cell transcriptomics. Nat. Methods 21, 1481-1491.
|
|
Hashimshony, T., Wagner, F., Sher, N.,Yanai, I., 2012. Cel-seq: Single-cell rna-seq by multiplexed linear amplification. Cell Rep. 2, 666-673.
|
|
Heimberg, G., Kuo, T., DePianto, D.J., Salem, O., Heigl, T., Diamant, N., Scalia, G., Biancalani, T., Turley, S.J., Rock, J.R., et al., 2024. A cell atlas foundation model for scalable search of similar human cells. Nature. doi: 10.1038/s41586-024-08411-y.
|
|
Jia, J.,Chen, L. 2023. Velde: Constructing cell potential landscapes by rna velocity vector field decomposition. arXiv:2311.10403.
|
|
Jiang, Z., Wu, Y., Miao, Y., Deng, K., Yang, F., Xu, S., Wang, Y., You, R., Zhang, L., Fan, Y., et al., 2023. HCCDB v2.0: decompose the expression variations by single-cell RNA-seq and spatial transcriptomics in HCC. Genomics Proteomics Bioinformatics 22, qzae011.
|
|
Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.-H., Myung, P., Plikus, M.V.,Nie, Q., 2021. Inference and analysis of cell-cell communication using cellchat. Nat. Commun. 12, 1088.
|
|
Kang, J.B., Nathan, A., Weinand, K., Zhang, F., Millard, N., Rumker, L., Moody, D.B., Korsunsky, I.,Raychaudhuri, S., 2021. Efficient and precise single-cell reference atlas mapping with symphony. Nat. Commun. 12, 5890.
|
|
Kim, J., Kim, H., Lee, M.-S., Lee, H., Kim, Y.J., Lee, W.Y., Yun, S.H., Kim, H.C., Hong, H.K., Hannenhalli, S., et al., 2023. Transcriptomes of the tumor-adjacent normal tissues are more informative than tumors in predicting recurrence in colorectal cancer patients. J. Transl. Med. 21, 209.
|
|
La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber, K., Kastriti, M.E., Lonnerberg, P., Furlan, A., et al., 2018. RNA velocity of single cells. Nature 560, 494-498.
|
|
Law, C.W., Chen, Y., Shi, W.,Smyth, G.K., 2014. Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29.
|
|
Li, H., van der Leun, A.M., Yofe, I., Lubling, Y., Gelbard-Solodkin, D., van Akkooi, A.C.J., van den Braber, M., Rozeman, E.A., Haanen, J.B.A.G., Blank, C.U., et al., 2019. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775-789.
|
|
Li, X., Yu, C., Luo, Y., Lin, J., Wang, F., Sun, X., Gao, Y., Tan, W., Xia, Q.,Kong, X., 2021. Aldolase a enhances intrahepatic cholangiocarcinoma proliferation and invasion through promoting glycolysis. Int. J. Biol. Sci. 17, 1782-1794.
|
|
Lian, Q., Wang, S., Zhang, G., Wang, D., Luo, G., Tang, J., Chen, L.,Gu, J., 2018. HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics, proteomics & bioinformatics 16, 269-275.
|
|
Liu, Y., Xun, Z., Ma, K., Liang, S., Li, X., Zhou, S., Sun, L., Liu, Y., Du, Y., Guo, X., et al., 2023. Identification of a tumour immune barrier in the hcc microenvironment that determines the efficacy of immunotherapy. J. Hepatol. 78, 770-782.
|
|
Losic, B., Craig, A.J., Villacorta-Martin, C., Martins-Filho, S.N., Akers, N., Chen, X., Ahsen, M.E., von Felden, J., Labgaa, I., DʹAvola, D., et al., 2020. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat. Commun. 11, 291.
|
|
Lotfollahi, M., Naghipourfar, M., Luecken, M.D., Khajavi, M., Buttner, M., Wagenstetter, M., Avsec, Z., Gayoso, A., Yosef, N.,Interlandi, M., 2022. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121-130.
|
|
Lotfollahi, M., Hao, Y., Theis, F.J.,Satija, R., 2024. The future of rapid and automated single-cell data analysis using reference mapping. Cell 187, 2343-2358.
|
|
Lu, Y., Yang, A., Quan, C., Pan, Y., Zhang, H., Li, Y., Gao, C., Lu, H., Wang, X.,Cao, P., 2022. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat. Commun. 13, 4594.
|
|
Luecken, M.D., Buttner, M., Chaichoompu, K., Danese, A., Interlandi, M., Mueller, M.F., Strobl, D.C., Zappia, L., Dugas, M., Colome-Tatche, M., et al., 2022. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41-50.
|
|
Ma, L., Wang, L., Khatib, S.A., Chang, C.-W., Heinrich, S., Dominguez, D.A., Forgues, M., Candia, J., Hernandez, M.O.,Kelly, M., 2021. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Hepatol. 75, 1397-1408.
|
|
Ma, L., Heinrich, S., Wang, L., Keggenhoff, F.L., Khatib, S., Forgues, M., Kelly, M., Hewitt, S.M., Saif, A.,Hernandez, J.M., 2022. Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer. Nat. Commun. 13, 7533.
|
|
MacParland, S.A., Liu, J.C., Ma, X.Z., Innes, B.T., Bartczak, A.M., Gage, B.K., Manuel, J., Khuu, N., Echeverri, J., Linares, I., et al., 2018. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383.
|
|
Manco, R.,Itzkovitz, S., 2021. Liver zonation. J Hepatol. 74, 466-468.
|
|
Massalha, H., Bahar Halpern, K., Abu Gazala, S., Jana, T., E.Massasa, E., E.Moor, A., Buchauer, L., Rozenberg, M., Pikarsky, E., Amit, I., et al., 2020. A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Bio. 16, e9682.
|
|
Niu, Y., Lin, Z., Wan, A., Sun, L., Yan, S., Liang, H., Zhan, S., Chen, D., Bu, X., Liu, P., et al., 2021. Loss-of-function genetic screening identifies aldolase a as an essential driver for liver cancer cell growth under hypoxia. Hepatology 74.
|
|
Paris, J.,Henderson, N.C., 2022. Liver zonation, revisited. Hepatology 76.
|
|
Payen, V.L., Lavergne, A., Sarika, N.A., Colonval, M., Karim, L., Deckers, M., Najimi, M., Coppieters, W., Charloteaux, B., Sokal, E.M., et al., 2021. Single-cell rna sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Reports 3, 100278.
|
|
Popescu, M.-C., Balas, V., Perescu-Popescu, L.,Mastorakis, N., 2009. Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 8, 579-588.
|
|
Qi, Z., Yu, L., Jiaqi, Y., Junli, W., Jie, F., Yali, Z., Lin, W., Xing, H., Qihan, F., Mao, Y., et al., 2019. Integrated multiomic analysis reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas. Gut 68, 2019.
|
|
Qiu, X., Zhang, Y., Martin-Rufino, J.D., Weng, C., Hosseinzadeh, S., Yang, D., Pogson, A.N., Hein, M.Y., Hoi Min, K., Wang, L., et al., 2022. Mapping transcriptomic vector fields of single cells. Cell 185, 690-711.
|
|
Ramachandran, P., Dobie, R., Wilson-Kanamori, J., Dora, E., Henderson, B., Luu, N., Portman, J., Matchett, K., Brice, M., Marwick, J., et al., 2019. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512-518.
|
|
Sasse, D., Katz, N.,Jungermann, K., 1975. Functional heterogeneity of rat-liver parenchyma and of isolated hepatocytes. FEBS Lett. 57, 83-88.
|
|
Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C., 2001. Estimating the support of a high-dimensional distribution. Neural Comput. 13, 1443-1471.
|
|
Sia, D., Villanueva, A., Friedman, S.L.,Llovet, J.M., 2017. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152, 745-761.
|
|
Sikkema, L., Ramirez-Suastegui, C., Strobl, D.C., Gillett, T.E., Zappia, L., Madissoon, E., Markov, N.S., Zaragosi, L.-E., Ji, Y., Ansari, M., et al., 2023. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563-1577.
|
|
Squair, J.W., Gautier, M., Kathe, C., Anderson, M.A., James, N.D., Hutson, T.H., Hudelle, R., Qaiser, T., Matson, K.J.E., Barraud, Q., et al., 2021. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692.
|
|
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck III, W.M., Hao, Y., Stoeckius, M., Smibert, P., Satija, R., et al., 2019. Comprehensive integration of single-cell data. Cell 177, 1888-1902.
|
|
Sun, Y., Wu, L., Zhong, Y., Zhou, K., Hou, Y., Wang, Z., Zhang, Z., Xie, J., Wang, C., Chen, D., et al., 2021. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 184, 404-421.
|
|
Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., et al., 2009. Mrna-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377-382.
|
|
Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al., 2023. Transfer learning enables predictions in network biology. Nature 618, 616-624.
|
|
Tsui, Y.-M., Chan, L.-K.,Ng, I.O.-L., 2020. Cancer stemness in hepatocellular carcinoma: Mechanisms and translational potential. Br. J. Cancer 122, 1428-1440.
|
|
Wesley, B.T., Ross, A.D.B., Muraro, D., Miao, Z., Saxton, S., Tomaz, R.A., Morell, C.M., Ridley, K., Zacharis, E.D., Petrus-Reurer, S., et al., 2022. Single-cell atlas of human liver development reveals pathways directing hepatic cell fates. Nat. Cell Biol. 24, 1487-1498.
|
|
Williams, C.K.I., Seeger, M. 2000. Using the nystrom method to speed up kernel machines. in Proceedings of the 13th International Conference on Neural Information Processing Systems MIT Press, Denver, CO, pp. 661-667.
|
|
Wolf, F.A., Angerer, P.,Theis, F.J., 2018. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 19, 15.
|
|
Wong, R.J., Ahmed, A.,Gish, R.G., 2015. Elevated alpha-fetoprotein: differential diagnosis - hepatocellular carcinoma and other disorders. Clin. Liver Dis. 19, 309-323.
|
|
Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., et al., 2021a. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2, 100141.
|
|
Wu, T., Luo, G., Lian, Q., Sui, C., Tang, J., Zhu, Y., Zheng, B., Li, Z., Zhang, Y., Zhang, Y., et al., 2021b. Discovery of a carbamoyl phosphate synthetase 1-deficient hcc subtype with therapeutic potential through integrative genomic and experimental analysis. Hepatology 74.
|
|
Xue, R., Zhang, Q., Cao, Q., Kong, R., Xiang, X., Liu, H., Feng, M., Wang, F., Cheng, J., Li, Z., et al., 2022. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141-147.
|
|
Yang, T., Li, Y.-F., Mahdavi, M., Jin, R.,Zhou, Z.-H. 2012. Nystrom method vs random fourier features: A theoretical and empirical comparison. in Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1 Curran Associates Inc., Lake Tahoe, Nevada, pp. 476-484.
|
|
Yang, Q., Zhang, S., Ma, J., Liu, S.,Chen, S., 2020. In search of zonation markers to identify liver functional disorders. Oxid. Med. Cell Longev. 2020, 9374896.
|
|
Yang, F., Wang, W., Wang, F., Fang, Y., Tang, D., Huang, J., Lu, H., Yao, J., et al., 2022. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intell. 4, 852-866.
|
|
Yuan, X., Seneviratne, J.A., Du, S., Xu, Y., Chen, Y., Jin, Q., Jin, X., Balachandran, A., Huang, S., Xu, Y., et al., 2022. Single-cell profiling of peripheral neuroblastic tumors identifies an aggressive transitional state that bridges an adrenergic-mesenchymal trajectory. Cell Rep. 41, 111455.
|
|
Zhang, Y., Zhang, Z., 2020. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17, 807-821.
|
|
Zhang, L., Li, Z., Skrzypczynska, K.M., Fang, Q., Zhang, W., O'Brien, S.A., He, Y., Wang, L., Zhang, Q., Kim, A., et al., 2020a. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442-459.
|
|
Zhang, M., Yang, H., Wan, L., Wang, Z., Wang, H., Ge, C., Liu, Y., Hao, Y., Zhang, D., Shi, G., et al., 2020b. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J. Hepatol 73, 1118-1130.
|
|
Zheng, C., Zheng, L., Yoo, J.-K., Guo, H., Zhang, Y., Guo, X., Kang, B., Hu, R., Huang, J.Y., Zhang, Q., et al., 2017. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342-1356.
|