9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 9
Sep.  2025
Turn off MathJax
Article Contents

Multifaceted interplays between the essential players and lipid peroxidation in ferroptosis

doi: 10.1016/j.jgg.2025.01.009
Funds:

This work was supported by grants from the National Natural Science Foundation of China (22076104) and the “Taishan Scholars” Program for Young Expert of Shandong Province (tsqn202103105).

  • Received Date: 2024-09-07
  • Accepted Date: 2025-01-17
  • Rev Recd Date: 2025-01-17
  • Publish Date: 2025-01-23
  • Ferroptosis, a type of programmed cell death, represents a distinct paradigm in cell biology. It is characterized by the iron-dependent accumulation of reactive oxygen species, which induce lipid peroxidation (LPO), and is orchestrated by the interplay between iron, lipid peroxides, and glutathione. In this review, we emphasize the frequently overlooked role of iron in LPO beyond the classical iron-driven Fenton reaction in several crucial processes that regulate cellular iron homeostasis, including iron intake and export as well as ferritinophagy, and the emerging roles of endoplasmic reticulum-resident flavoprotein oxidoreductases, especially P450 oxidoreductases, in modulating LPO. We summarize how various types of fatty acids (FAs), including saturated, monounsaturated, and polyunsaturated FAs, differentially influence ferroptosis when incorporated into phospholipids. Furthermore, we highlight the therapeutic potential of targeting LPO to mitigate ferroptosis and discuss the regulatory mechanisms of endogenous lipophilic radical-trapping antioxidants that confer resistance to ferroptosis, shedding light on therapeutic avenues for ferroptosis-associated diseases.
  • loading
  • Anthonymuthu, T.S., Tyurina, Y.Y., Sun, W.Y., Mikulska-Ruminska, K., Shrivastava, I.H., Tyurin, V.A., Cinemre, F.B., Dar, H.H., VanDemark, A.P., Holman, T.R., et al., 2021. Resolving the paradox of ferroptotic cell death: ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis. Redox Biol. 38, 101744.
    Ayala, A., Munoz, M.F., Arguelles, S., 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438.
    Aziz, N., Munro, H.N., 1987. Iron regulates ferritin mRNA translation through a segment of its 5' untranslated region. Proc. Natl. Acad. Sci. U. S. A. 84, 8478-8482.
    Barias, E., Jakubec, M., Forsund, E., Hjornevik, L.V., Lewis, A.E., Halskau, O., 2023. Contrasting the phospholipid profiles of two neoplastic cell lines reveal a high PC:PE ratio for SH-SY5Y cells relative to A431 cells. Biochem. Biophys. Res. Commun. 656, 23-29.
    Barouki, R., Morel, Y., 2001. Repression of cytochrome P450 1A1 gene expression by oxidative stress: mechanisms and biological implications. Biochem. Pharmacol. 61, 511-516.
    Bartolacci, C., Andreani, C., Vale, G., Berto, S., Melegari, M., Crouch, A.C., Baluya, D.L., Kemble, G., Hodges, K., Starrett, J., et al., 2022. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer. Nat. Commun. 13, 4327.
    Bayeva, M., Khechaduri, A., Wu, R., Burke, M.A., Wasserstrom, J.A., Singh, N., Liesa, M., Shirihai, O.S., Langer, N.B., Paw, B.H., et al., 2013. ATP-binding cassette B10 regulates early steps of heme synthesis. Circ. Res. 113, 279-287.
    Berger, S., Weichert, H., Porzel, A., Wasternack, C., Kuhn, H., Feussner, I., 2001. Enzymatic and non-enzymatic lipid peroxidation in leaf development. Biochim. Biophys. Acta. 1533, 266-276.
    Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., Roberts, M.A., Tong, B., Maimone, T.J., Zoncu, R., et al., 2019. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688-692.
    Catala, A., 2013. Five decades with polyunsaturated fatty acids: chemical synthesis, enzymatic formation, lipid peroxidation and its biological effects. J. Lipids 2013, 710290.
    Chen, D., Chu, B., Yang, X., Liu, Z., Jin, Y., Kon, N., Rabadan, R., Jiang, X., Stockwell, B.R., Gu, W., 2021a. iPLA2beta-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat. Commun. 12, 3644.
    Chen, X., Kang, R., Kroemer, G., Tang, D., 2021b. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 18, 280-296.
    Chu, B., Kon, N., Chen, D., Li, T., Liu, T., Jiang, L., Song, S., Tavana, O., Gu, W., 2019. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell. Biol. 21, 579-591.
    Co, H.K.C., Wu, C.C., Lee, Y.C., Chen, S.H., 2024. Emergence of large-scale cell death through ferroptotic trigger waves. Nature 631, 654-662.
    Coniglio, S., Shumskaya, M., Vassiliou, E., 2023. Unsaturated fatty acids and their immunomodulatory properties. Biology (Basel) 12, 279.
    Connick, J.P., Reed, J.R., Cawley, G.F., Backes, W.L., 2021a. Heme oxygenase-1 affects cytochrome P450 function through the formation of heteromeric complexes: Interactions between CYP1A2 and heme oxygenase-1. J. Biol. Chem. 296, 100030.
    Connick, J.P., Reed, J.R., Cawley, G.F., Backes, W.L., 2021b. Heteromeric complex formation between human cytochrome P450 CYP1A1 and heme oxygenase-1. Biochem. J. 478, 377-388.
    Dev, S., Babitt, J.L., 2017. Overview of iron metabolism in health and disease. Hemodial. Int. 21 Suppl 1, S6-S20.
    Dierge, E., Debock, E., Guilbaud, C., Corbet, C., Mignolet, E., Mignard, L., Bastien, E., Dessy, C., Larondelle, Y., Feron, O., 2021. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701-1715.
    Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., et al., 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072.
    Dixon, S.J., Patel, D.N., Welsch, M., Skouta, R., Lee, E.D., Hayano, M., Thomas, A.G., Gleason, C.E., Tatonetti, N.P., Slusher, B.S., et al., 2014. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3, e02523.
    Dixon, S.J., Stockwell, B.R., 2014. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9-17.
    Dixon, S.J., Winter, G.E., Musavi, L.S., Lee, E.D., Snijder, B., Rebsamen, M., Superti-Furga, G., Stockwell, B.R., 2015. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604-1609.
    Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., Goya Grocin, A., Xavier da Silva, T.N., Panzilius, E., Scheel, C.H., et al., 2019. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693-698.
    Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., et al., 2017. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91-98.
    Du, Y., Guo, Z., 2022. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov. 8, 501.
    Epifanovsky, E., Polyakov, I., Grigorenko, B., Nemukhin, A., Krylov, A.I., 2010. The effect of oxidation on the electronic structure of the green fluorescent protein chromophore. J. Chem. Phys. 132, 115104.
    Fang, X., Cai, Z., Wang, H., Han, D., Cheng, Q., Zhang, P., Gao, F., Yu, Y., Song, Z., Wu, Q., et al., 2020. Loss of cardiac ferritin H facilitates cardiomyopathy via slc7a11-mediated ferroptosis. Circ. Res. 127, 486-501.
    Feng, H., Stockwell, B.R., 2018. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS. Biol. 16, e2006203.
    Filip-Ciubotaru, F., Manciuc, C., Stoleriu, G., Foia, L., 2016. Nadph oxidase: structure and activation mechanisms (Review). Note I. Rev. Med. Chir. Soc. Med. Nat. Iasi. 120, 29-33.
    Forcina, G.C., Dixon, S.J., 2019. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 19, e1800311.
    Frand, A.R., Kaiser, C.A., 1999. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol. Cell 4, 469-477.
    Freitas, F.P., Alborzinia, H., Dos Santos, A.F., Nepachalovich, P., Pedrera, L., Zilka, O., Inague, A., Klein, C., Aroua, N., Kaushal, K., et al., 2024. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature 626, 401-410.
    Fujii, J., Yamada, K.I., 2023. Defense systems to avoid ferroptosis caused by lipid peroxidation-mediated membrane damage. Free Radic. Res. 57, 353-372.
    Galaris, D., Barbouti, A., Pantopoulos, K., 2019. Iron homeostasis and oxidative stress: an intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 1866, 118535.
    Gao, G., Li, J., Zhang, Y., Chang, Y.Z., 2019. Cellular iron metabolism and regulation. Adv. Exp. Med. Biol. 1173, 21-32.
    Ghrayeb, A., Finney, A.C., Agranovich, B., Peled, D., Anand, S.K., McKinney, M.P., Sarji, M., Yang, D., Weissman, N., Drucker, S., et al., 2024. Serine synthesis via reversed SHMT2 activity drives glycine depletion and acetaminophen hepatotoxicity in MASLD. Cell Metab. 36, 116-129.
    Girotti, A.W., 2008. Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action. Free Radic. Biol. Med. 44, 956-968.
    Girotti, A.W., Korytowski, W., 2023. Trafficking of oxidative stress-generated lipid hydroperoxides: pathophysiological implications. Free Radic. Res. 57, 130-139.
    Guo, J., Duan, L., He, X., Li, S., Wu, Y., Xiang, G., Bao, F., Yang, L., Shi, H., Gao, M., et al., 2021. A combined model of human iPSC-derived liver organoids and hepatocytes reveals ferroptosis in DGUOK mutant mtDNA depletion syndrome. Adv. Sci (Weinh). 8, 2004680.
    Han, C., Liu, Y., Dai, R., Ismail, N., Su, W., Li, B., 2020. Ferroptosis and its potential role in human diseases. Front. Pharmacol. 11, 239.
    Han, J.F., Wang, S.L., He, X.Y., Liu, C.Y., Hong, J.Y., 2006. Effect of genetic variation on human cytochrome P450 reductase-mediated paraquat cytotoxicity. Toxicol. Sci. 91, 42-48.
    Hentze, M.W., Caughman, S.W., Rouault, T.A., Barriocanal, J.G., Dancis, A., Harford, J.B., Klausner, R.D., 1987. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238, 1570-1573.
    Hentze, M.W., Muckenthaler, M.U., Galy, B., Camaschella, C., 2010. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24-38.
    Hirling, H., Henderson, B.R., Kuhn, L.C., 1994. Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J. 13, 453-461.
    Ichikawa, Y., Bayeva, M., Ghanefar, M., Potini, V., Sun, L., Mutharasan, R.K., Wu, R., Khechaduri, A., Jairaj Naik, T., Ardehali, H., 2012. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc. Natl. Acad. Sci. U. S. A. 109, 4152-4157.
    Islam, M.T., 2017. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 39, 73-82.
    Ito, J., Omiya, S., Rusu, M.C., Ueda, H., Murakawa, T., Tanada, Y., Abe, H., Nakahara, K., Asahi, M., Taneike, M., et al., 2021. Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. Elife 10, e62174.
    Iyanagi, T., Xia, C., Kim, J.J., 2012. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Arch. Biochem. Biophys. 528, 72-89.
    Jiacong, H., Qirui, Y., Haonan, L., Yichang, S., Yan, C., Keng, C., 2023. Zoledronic acid induces ferroptosis by upregulating POR in osteosarcoma. Med. Oncol. 40, 141.
    Jiang, X., Stockwell, B.R., Conrad, M., 2021. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266-282.
    Kagan, V.E., Mao, G., Qu, F., Angeli, J.P., Doll, S., Croix, C.S., Dar, H.H., Liu, B., Tyurin, V.A., Ritov, V.B., et al., 2017. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81-90.
    Kang, Y.P., Mockabee-Macias, A., Jiang, C., Falzone, A., Prieto-Farigua, N., Stone, E., Harris, I.S., DeNicola, G.M., 2021. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab. 33, 174-189.
    Karihtala, P., Soini, Y., 2007. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115, 81-103.
    Klasson, T.D., LaGory, E.L., Zhao, H., Huynh, S.K., Papandreou, I., Moon, E.J., Giaccia, A.J., 2022. ACSL3 regulates lipid droplet biogenesis and ferroptosis sensitivity in clear cell renal cell carcinoma. Cancer Metab. 10, 14.
    Kodali, V.K., Thorpe, C., 2010. Oxidative protein folding and the quiescin-sulfhydryl oxidase family of flavoproteins. Antioxid. Redox Signal. 13, 1217-1230.
    Koeller, D.M., Casey, J.L., Hentze, M.W., Gerhardt, E.M., Chan, L.N., Klausner, R.D., Harford, J.B., 1989. A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. Proc. Natl. Acad. Sci. U. S. A. 86, 3574-3578.
    Koppula, P., Lei, G., Zhang, Y., Yan, Y., Mao, C., Kondiparthi, L., Shi, J., Liu, X., Horbath, A., Das, M., et al., 2022. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun. 13, 2206.
    Kourie, J.I., 1998. Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 275, C1-24.
    Kovalchuk, N., Jilek, J.L., Van Winkle, L.S., Cherrington, N.J., Ding, X., 2022. Role of lung P450 oxidoreductase in paraquat-induced collagen deposition in the lung. Antioxidants (Basel) 11, 219.
    Kovalchuk, N., Zhang, Q.Y., Van Winkle, L., Ding, X., 2020. Contribution of pulmonary CYP-mediated bioactivation of naphthalene to airway epithelial injury in the lung. Toxicol. Sci. 177, 334-346.
    Kraft, V.A.N., Bezjian, C.T., Pfeiffer, S., Ringelstetter, L., Muller, C., Zandkarimi, F., Merl-Pham, J., Bao, X., Anastasov, N., Kossl, J., et al., 2020. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41-53.
    Krummel, B., von Hanstein, A.S., Plotz, T., Lenzen, S., Mehmeti, I., 2022. Differential effects of saturated and unsaturated free fatty acids on ferroptosis in rat beta-cells. J. Nutr. Biochem. 106, 109013.
    Lakhal-Littleton, S., Wolna, M., Carr, C.A., Miller, J.J., Christian, H.C., Ball, V., Santos, A., Diaz, R., Biggs, D., Stillion, R., et al., 2015. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function. Proc. Natl. Acad. Sci. U. S. A. 112, 3164-3169.
    Li, N., Wang, W., Zhou, H., Wu, Q., Duan, M., Liu, C., Wu, H., Deng, W., Shen, D., Tang, Q., 2020. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic. Biol. Med. 160, 303-318.
    Li, Y., Ran, Q., Duan, Q., Jin, J., Wang, Y., Yu, L., Wang, C., Zhu, Z., Chen, X., Weng, L., et al., 2024a. 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature 626, 411-418.
    Li, Z., Hu, Y., Zheng, H., Li, M., Liu, Y., Feng, R., Li, X., Zhang, S., Tang, M., Yang, M., et al., 2024b. LPCAT1-mediated membrane phospholipid remodelling promotes ferroptosis evasion and tumour growth. Nat. Cell Biol. 26, 811-824.
    Liang, D., Feng, Y., Zandkarimi, F., Wang, H., Zhang, Z., Kim, J., Cai, Y., Gu, W., Stockwell, B.R., Jiang, X., 2023. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748-2764.
    Liang, D., Minikes, A.M., Jiang, X., 2022. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 82, 2215-2227.
    Liu, Y., Lu, S., Wu, L.L., Yang, L., Yang, L., Wang, J., 2023. The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis. 14, 519.
    Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., Dulak, J., 2016. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73, 3221-3247.
    Lu, Y., Liang, F.X., Wang, X., 2014. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol. Cell 55, 758-770.
    Luo, M., Yan, J., Hu, X., Li, H., Li, H., Liu, Q., Chen, Y., Zou, Z., 2023. Targeting lipid metabolism for ferroptotic cancer therapy. Apoptosis 28, 81-107.
    Ma, X.H., Liu, J.H., Liu, C.Y., Sun, W.Y., Duan, W.J., Wang, G., Kurihara, H., He, R.R., Li, Y.F., Chen, Y., et al., 2022. ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct. Target. Ther. 7, 288.
    Magtanong, L., Ko, P.-J., To, M., Cao, J.Y., Forcina, G.C., Tarangelo, A., Ward, C.C., Cho, K., Patti, G.J., Nomura, D.K., et al., 2019. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420-432.
    Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W., Kimmelman, A.C., 2014. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105-109.
    Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., Koppula, P., Wu, S., Zhuang, L., Fang, B., et al., 2021. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586-590.
    McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., et al., 2001. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755-1759.
    Mishima, E., Ito, J., Wu, Z., Nakamura, T., Wahida, A., Doll, S., Tonnus, W., Nepachalovich, P., Eggenhofer, E., Aldrovandi, M., et al., 2022. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778-783.
    Mishima, E., Nakamura, T., Zheng, J., Zhang, W., Mourao, A.S.D., Sennhenn, P., Conrad, M., 2023. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E9-E18.
    Missiroli, S., Patergnani, S., Caroccia, N., Pedriali, G., Perrone, M., Previati, M., Wieckowski, M.R., Giorgi, C., 2018. Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis. 9, 329.
    Miyazawa, T., 2021. Lipid hydroperoxides in nutrition, health, and diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 97, 161-196.
    Nakamura, T., Hipp, C., Santos Dias Mourao, A., Borggrafe, J., Aldrovandi, M., Henkelmann, B., Wanninger, J., Mishima, E., Lytton, E., Emler, D., et al., 2023. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371-377.
    Ohshima, T., Yamamoto, H., Sakamaki, Y., Saito, C., Mizushima, N., 2022. NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferritinophagy. J. Cell Biol. 221.
    Ong, G., Logue, S.E., 2023. Unfolding the interactions between endoplasmic reticulum stress and oxidative stress. Antioxidants (Basel) 12, 981.
    Pamplona, R., 2008. Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim. Biophys. Acta. 1777, 1249-1262.
    Pandey, A.V., Fluck, C.E., 2013. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol. Ther. 138, 229-254.
    Paradies, G., Petrosillo, G., Paradies, V., Ruggiero, F.M., 2009. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium. 45, 643-650.
    Pearson, S.A., Cowan, J.A., 2021. Evolution of the human mitochondrial ABCB7 [2Fe-2S](GS)(4) cluster exporter and the molecular mechanism of an E433K disease-causing mutation. Arch. Biochem. Biophys. 697, 108661.
    Philpott, C.C., Protchenko, O., Wang, Y., Novoa-Aponte, L., Leon-Torres, A., Grounds, S., Tietgens, A.J., 2023. Iron-tracking strategies: chaperones capture iron in the cytosolic labile iron pool. Front. Mol. Biosci. 10, 1127690.
    Pizzimenti, S., Ciamporcero, E., Daga, M., Pettazzoni, P., Arcaro, A., Cetrangolo, G., Minelli, R., Dianzani, C., Lepore, A., Gentile, F., et al., 2013. Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front. Physiol. 4, 242.
    Poli, G., Schaur, R.J., Siems, W.G., Leonarduzzi, G., 2008. 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med. Res. Rev. 28, 569-631.
    Pope, L.E., Dixon, S.J., 2023. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33, 1077-1087.
    Powell, L.E., Foster, P.A., 2021. Protein disulphide isomerase inhibition as a potential cancer therapeutic strategy. Cancer Med. 10, 2812-2825.
    Qiu, B., Zandkarimi, F., Bezjian, C.T., Reznik, E., Soni, R.K., Gu, W., Jiang, X., Stockwell, B.R., 2024. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 187, 1177-1190.
    Reed, A., Ichu, T.A., Milosevich, N., Melillo, B., Schafroth, M.A., Otsuka, Y., Scampavia, L., Spicer, T.P., Cravatt, B.F., 2022. LPCAT3 inhibitors remodel the polyunsaturated phospholipid content of human cells and protect from ferroptosis. ACS Chem. Biol. 17, 1607-1618.
    Riddick, D.S., Ding, X., Wolf, C.R., Porter, T.D., Pandey, A.V., Zhang, Q.Y., Gu, J., Finn, R.D., Ronseaux, S., McLaughlin, L.A., et al., 2013. NADPH-cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology. Drug Metab. Dispos. 41, 12-23.
    Rodencal, J., Kim, N., He, A., Li, V.L., Lange, M., He, J., Tarangelo, A., Schafer, Z.T., Olzmann, J.A., Long, J.Z., et al., 2024. Sensitization of cancer cells to ferroptosis coincident with cell cycle arrest. Cell Chem. Biol. 31, 234-248.
    Rooseboom, M., Commandeur, J.N., Vermeulen, N.P., 2004. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol. Rev. 56, 53-102.
    Ryter, S.W., 2022. Heme oxygenase-1: an anti-inflammatory effector in cardiovascular, lung, and related metabolic disorders. Antioxidants (Basel) 11, 555.
    Santagostino, S.F., Assenmacher, C.A., Tarrant, J.C., Adedeji, A.O., Radaelli, E., 2021. Mechanisms of regulated cell death: current perspectives. Vet. Pathol. 58, 596-623.
    Santiago, P., 2012. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Scientific World Journal. 2012, 846824.
    Schulman, S., Wang, B., Li, W., Rapoport, T.A., 2010. Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners. Proc. Natl. Acad. Sci. U. S. A. 107, 15027-15032.
    Schwarz, D.S., Blower, M.D., 2016. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell. Mol. Life Sci. 73, 79-94.
    Seguin, A., Jia, X., Earl, A.M., Li, L., Wallace, J., Qiu, A., Bradley, T., Shrestha, R., Troadec, M.B., Hockin, M., et al., 2020. The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice. J. Biol. Chem. 295, 11002-11020.
    Shibata, Y., Voeltz, G.K., Rapoport, T.A., 2006. Rough sheets and smooth tubules. Cell 126, 435-439.
    Singh, N.K., Rao, G.N., 2019. Emerging role of 12/15-lipoxygenase (ALOX15) in human pathologies. Prog. Lipid Res. 73, 28-45.
    Snaebjornsson, M.T., Janaki-Raman, S., Schulze, A., 2020. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 31, 62-76.
    Song, Y., Zhang, Y., Zhu, L., Chen, Y., Chen, Y.J., Zhu, Z., Feng, J., Qi, Z., Yu, J.Z., Yang, Z., et al., 2024. Phosphocholine-induced energy source shift alleviates mitochondrial dysfunction in lung cells caused by geospecific PM(2.5) components. Proc. Natl. Acad. Sci. U. S. A. 121, e2317574121.
    Soula, M., Weber, R.A., Zilka, O., Alwaseem, H., La, K., Yen, F., Molina, H., Garcia-Bermudez, J., Pratt, D.A., Birsoy, K., 2020. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351-1360.
    Terzi, E.M., Sviderskiy, V.O., Alvarez, S.W., Whiten, G.C., Possemato, R., 2021. Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. Sci. Adv. 7, eabg4302.
    Tesfay, L., Paul, B.T., Konstorum, A., Deng, Z., Cox, A.O., Lee, J., Furdui, C.M., Hegde, P., Torti, F.M., Torti, S.V., 2019. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79, 5355-5366.
    Tu, B.P., Weissman, J.S., 2004. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341-346.
    Tyurina, Y.Y., Kapralov, A.A., Tyurin, V.A., Shurin, G., Amoscato, A.A., Rajasundaram, D., Tian, H., Bunimovich, Y.L., Nefedova, Y., Herrick, W.G., et al., 2023. Redox phospholipidomics discovers pro-ferroptotic death signals in A375 melanoma cells in vitro and in vivo. Redox Biol. 61, 102650.
    Ubellacker, J.M., Tasdogan, A., Ramesh, V., Shen, B., Mitchell, E.C., Martin-Sandoval, M.S., Gu, Z., McCormick, M.L., Durham, A.B., Spitz, D.R., et al., 2020. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113-118.
    Upadhyayula, P.S., Higgins, D.M., Mela, A., Banu, M., Dovas, A., Zandkarimi, F., Patel, P., Mahajan, A., Humala, N., Nguyen, T.T.T., et al., 2023. Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nat. Commun. 14, 1187.
    von Krusenstiern, A.N., Robson, R.N., Qian, N., Qiu, B., Hu, F., Reznik, E., Smith, N., Zandkarimi, F., Estes, V.M., Dupont, M., et al., 2023. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol. 19, 719-730.
    Wang, B., Tontonoz, P., 2019. Phospholipid remodeling in physiology and disease. Annu. Rev. Physiol. 81, 165-188.
    Wang, J., de Montellano, P.R., 2003. The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase. J. Biol. Chem. 278, 20069-20076.
    Wang, Y.P., Sharda, A., Xu, S.N., van Gastel, N., Man, C.H., Choi, U., Leong, W.Z., Li, X., Scadden, D.T., 2021. Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis. Cell Metab. 33, 1027-1041.
    Weng, Y., Fang, C., Turesky, R.J., Behr, M., Kaminsky, L.S., Ding, X., 2007. Determination of the role of target tissue metabolism in lung carcinogenesis using conditional cytochrome P450 reductase-null mice. Cancer Res. 67, 7825-7832.
    Xu, T., Zhang, X., Zhao, W., Shi, J., Wan, S., Zhang, Y., Hao, Y., Sun, M., He, J., Jiang, L., et al., 2024. Foxo1 is an iron-responsive transcriptional factor regulating systemic iron homeostasis. Blood 144, 1314-1328.
    Yamada, N., Karasawa, T., Ito, J., Yamamuro, D., Morimoto, K., Nakamura, T., Komada, T., Baatarjav, C., Saimoto, Y., Jinnouchi, Y., et al., 2024. Inhibition of 7-dehydrocholesterol reductase prevents hepatic ferroptosis under an active state of sterol synthesis. Nat. Commun. 15, 2195.
    Yan, B., Ai, Y., Sun, Q., Ma, Y., Cao, Y., Wang, J., Zhang, Z., Wang, X., 2021a. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell. 81, 355-369 e310.
    Yan, H.F., Zou, T., Tuo, Q.Z., Xu, S., Li, H., Belaidi, A.A., Lei, P., 2021b. Ferroptosis: mechanisms and links with diseases. Signal Transduct. Target. Ther. 6, 49.
    Yan, S., Yang, X.F., Liu, H.L., Fu, N., Ouyang, Y., Qing, K., 2015. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J. Gastroenterol. 21, 3492-3498.
    Yanatori, I., Kishi, F., 2019. DMT1 and iron transport. Free Radic. Biol. Med. 133, 55-63.
    Yanatori, I., Tabuchi, M., Kawai, Y., Yasui, Y., Akagi, R., Kishi, F., 2010. Heme and non-heme iron transporters in non-polarized and polarized cells. BMC Cell Biol. 11, 39.
    Yang, W., Wang, Y., Zhang, C., Huang, Y., Yu, J., Shi, L., Zhang, P., Yin, Y., Li, R., Tao, K., 2022. Maresin1 protect against ferroptosis-induced liver injury through ROS inhibition and Nrf2/HO-1/GPX4 activation. Front. Pharmacol. 13, 865689.
    Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S., Stockwell, B.R., 2016. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. U. S. A. 113, E4966-4975.
    Yi, J., Zhu, J., Wu, J., Thompson, C.B., Jiang, X., 2020. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl. Acad. Sci. U. S. A. 117, 31189-31197.
    Zhang, Q., Yao, D., Rao, B., Jian, L., Chen, Y., Hu, K., Xia, Y., Li, S., Shen, Y., Qin, A., et al., 2021. The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3. Nat. Commun. 12, 6869.
    Zhang, S., Xin, W., Anderson, G.J., Li, R., Gao, L., Chen, S., Zhao, J., Liu, S., 2022. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Dis. 13, 40.
    Zhang, Z., Guo, M., Shen, M., Kong, D., Zhang, F., Shao, J., Tan, S., Wang, S., Chen, A., Cao, P., et al., 2020. The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biol. 36, 101619.
    Zhang, Z., Zhou, H., Gu, W., Wei, Y., Mou, S., Wang, Y., Zhang, J., Zhong, Q., 2024. CGI1746 targets σ1R to modulate ferroptosis through mitochondria-associated membranes. Nat. Chem. Biol. 20, 699-709.
    Zheng, J., Conrad, M., 2020. The metabolic underpinnings of ferroptosis. Cell Metab. 32, 920-937.
    Zou, Y., Li, H., Graham, E.T., Deik, A.A., Eaton, J.K., Wang, W., Sandoval-Gomez, G., Clish, C.B., Doench, J.G., Schreiber, S.L., 2020. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol. 16, 302-309.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (83) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return