|
Allen, S.L., 1963. Genomic exclusion in Tetrahymena: genetic basis. J. Protozool. 10, 413-420.
|
|
Billings, T., Sargent, E.E., Szatkiewicz, J.P., Leahy, N., Kwak, I.Y., Bektassova, N., Walker, M., Hassold, T., Graber, J.H., Broman, K.W., 2010. Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping. PLoS ONE 5, e15340.
|
|
Bolivar, P., Mugal, C.F., Rossi, M., Nater, A., Wang, M., Dutoit, L., Ellegren, H., 2018. Biased inference of selection due to GC-biased gene conversion and the rate of protein evolution in flycatchers when accounting for it. Mol. Biol. Evol. 35, 2475-2486.
|
|
Brazier, T., Glemin, S., 2022. Diversity and determinants of recombination landscapes in flowering plants. PLoS Genet. 18, e1010141.
|
|
Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R.D., Petukhova, G.V., 2012. Genetic recombination is directed away from functional genomic elements in mice. Nature 485, 642-645.
|
|
Brion, C., Legrand, S., Peter, J., Caradec, C., Pflieger, D., Hou, J., Friedrich, A., Llorente, B., Schacherer, J., 2017. Variation of the meiotic recombination landscape and properties over a broad evolutionary distance in yeasts. PLoS Genet. 13, e1006917.
|
|
Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194-1202.
|
|
Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890.
|
|
Chi, J., Mahe, F., Loidl, J., Logsdon, J., Dunthorn, M., 2014. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660-672.
|
|
Choi, K., Zhao, X., Kelly, K.A., Venn, O., Higgins, J.D., Yelina, N.E., Hardcastle, T.J., Ziolkowski, P.A., Copenhaver, G.P., Franklin, F.C.H., 2013. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat. Genet. 45, 1327-1336.
|
|
Comeron, J.M., Ratnappan, R., Bailin, S., 2012. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet. 8, e1002905.
|
|
Croll, D., Lendenmann, M.H., Stewart, E., McDonald, B.A., 2015. The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics 201, 1213-1228.
|
|
Doerder, F.P., 2014. Abandoning sex: multiple origins of asexuality in the ciliate Tetrahymena. BMC Ecol. Evol. 14, 1-13.
|
|
Dutta, R., Saha-Mandal, A., Cheng, X., Qiu, S., Serpen, J., Fedorova, L., Fedorov, A., 2018. 1000 human genomes carry widespread signatures of GC biased gene conversion. BMC Genomics 19, 1-9.
|
|
Eisen, J.A., Coyne, R.S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J.R., Badger, J.H., Ren, Q., Amedeo, P., Jones, K.M., et al., 2006. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4, e286.
|
|
Feng, Y., Landweber, L.F., 2021. Transposon debris in ciliate genomes. PLoS Biol. 19, e3001354.
|
|
Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Correard, S., Gheorghe, M., Baranasic, D., et al., 2020. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87-D92.
|
|
Gong, W., Song, X., Xie, C., Zhou, Y., Zhu, Z., Xu, C., Peng, Y., 2021. Landscape of meiotic crossovers in Hericium erinaceus. Microbiol. Res. 245, 126692.
|
|
Gorovsky, M.A., Yao, M.C., Keevert, J.B., Pleger, G.L., 1975. Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. 9, 311-327.
|
|
Hamilton, E.P., Kapusta, A., Huvos, P.E., Bidwell, S.L., Zafar, N., Tang, H., Hadjithomas, M., Krishnakumar, V., Badger, J.H., Caler, E.V., et al., 2016. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. Elife 5, e19090.
|
|
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., Glass, C.K., 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589.
|
|
Henningsen, A., Toomet, O., 2011. maxLik: A package for maximum likelihood estimation in R. Comput. Stat. 26, 443-458.
|
|
Jia, X., Zhang, Y., Zhang, Q., Zhao, Q., Traw, M.B., Wang, L., Tian, D., Wang, C., Yang, S., 2019. High-resolution insight into recombination events at the SD1 locus in rice. Plant J. 97, 683-692.
|
|
Jiang, H., Li, N., Gopalan, V., Zilversmit, M.M., Varma, S., Nagarajan, V., Li, J., Mu, J., Hayton, K., Henschen, B., 2011. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol. 12, 1-15.
|
|
Jiang, C., Wang, G., Zhang, J., Gu, S., Wang, X., Qin, W., Chen, K., Yuan, D., Chai, X., Yang, M., et al., 2023. iGDP: An integrated genome decontamination pipeline for wild ciliated microeukaryotes. Mol. Ecol. Resour. 23, 1182-1193.
|
|
Kent, T.V., Uzunovic, J., Wright, S.I., 2017. Coevolution between transposable elements and recombination. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160458.
|
|
Kosambi, D.D., 1943. The estimation of map distance from recombination values. Ann. Eugen. 12, 172-175. https://doi.org/110.1111/j.1469-1809.1943.tb02321.x.
|
|
Lambing, C., Franklin, F.C.H., Wang, C.J.R., 2017. Understanding and manipulating meiotic recombination in plants. Plant Physiol. 173, 1530-1542.
|
|
Lee, C., Leem, J., Oh, J.S., 2023. Selective utilization of non-homologous end-joining and homologous recombination for DNA repair during meiotic maturation in mouse oocytes. Cell Prolif. 56, e13384.
|
|
Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
|
|
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 2009. Genome Project Data Processing Subgroup,The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
|
|
Li, R., Bitoun, E., Altemose, N., Davies, R.W., Davies, B., Myers, S.R., 2019. A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination. Nat. Commun. 10, 3900.
|
|
Li, W., Freudenberg, J., 2009. Two-parameter characterization of chromosome-scale recombination rate. Genome Res. 19, 2300-2307.
|
|
Li, X., Li, L., Yan, J., 2015. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize. Nat. Commun. 6, 1-9.
|
|
Lian, Q., Maestroni, L., Gaudin, M., Llorente, B., Mercier, R., 2022. Remarkably high rate of meiotic recombination in the fission yeast Schizosaccharomyces pombe. bioRxiv. https://doi.org/10.1101/2022.12.12.520044.
|
|
Libuda, D.E., Uzawa, S., Meyer, B.J., Villeneuve, A.M., 2013. Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature 502, 703-706.
|
|
Liu, H., Huang, J., Sun, X., Li, J., Hu, Y., Yu, L., Liti, G., Tian, D., Hurst, L.D., Yang, S., 2018. Tetrad analysis in plants and fungi finds large differences in gene conversion rates but no GC bias. Nat. Ecol. Evol. 2, 164-173.
|
|
Liu, H., Zhang, X., Huang, J., Chen, J., Tian, D., Hurst, L.D., Yang, S., 2015. Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee. Genome Biol. 16, 1-20.
|
|
Liu, Y., Gaines, W.A., Callender, T., Busygina, V., Oke, A., Sung, P., Fung, J.C., Hollingsworth, N.M., 2014. Down-regulation of Rad51 activity during meiosis in yeast prevents competition with Dmc1 for repair of double-strand breaks. PLoS Genet. 10, e1004005.
|
|
Loidl, J., Lorenz, A., 2016. DNA double-strand break formation and repair in Tetrahymena meiosis. Semin Cell Dev Biol. 54, 126-134.
|
|
Lu, P., Han, X., Qi, J., Yang, J., Wijeratne, A.J., Li, T., Ma, H., 2012. Analysis of Arabidopsis genome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg erecta and all four products of a single meiosis. Genome Res. 22, 508-518.
|
|
Luo, C., Li, X., Zhang, Q., Yan, J., 2019. Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nat. Commun. 10, 785.
|
|
Mancera, E., Bourgon, R., Brozzi, A., Huber, W., Steinmetz, L.M., 2008. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479-485.
|
|
Marsolier-Kergoat, M.C., Khan, M.M., Schott, J., Zhu, X., Llorente, B., 2018. Mechanistic view and genetic control of DNA recombination during meiosis. Mol. Cell 70, 9-20 e26.
|
|
Matise, T.C., Chen, F., Chen, W., Francisco, M., Hansen, M., He, C., Hyland, F.C., Kennedy, G.C., Kong, X., Murray, S.S., 2007. A second-generation combined linkage-physical map of the human genome. Genome Res. 17, 1783-1786.
|
|
Melamed-Bessudo, C., Shilo, S., Levy, A.A., 2016. Meiotic recombination and genome evolution in plants. Curr. Opin. Plant Biol. 30, 82-87.
|
|
Morgan, A.P., Gatti, D.M., Najarian, M.L., Keane, T.M., Galante, R.J., Pack, A.I., Mott, R., Churchill, G.A., de Villena, F.P.M., 2017. Structural variation shapes the landscape of recombination in mouse. Genetics 206, 603-619.
|
|
Morgan, C., Fozard, J.A., Hartley, M., Henderson, I.R., Bomblies, K., Howard, M., 2021. Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis. Nat. Commun. 12, 4674.
|
|
Mukiza, T.O., Protacio, R.U., Davidson, M.K., Steiner, W.W., Wahls, W.P., 2019. Diverse DNA sequence motifs activate meiotic recombination hotspots through a common chromatin remodeling pathway. Genetics 213, 789-803.
|
|
Myers, S., Bottolo, L., Freeman, C., McVean, G., Donnelly, P., 2005. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321-324.
|
|
Orias, E., Cervantes, M.D., Hamilton, E.P., 2011. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Res. Microbiol. 162, 578-586.
|
|
Otto, S.P., Payseur, B.A., 2019. Crossover interference: shedding light on the evolution of recombination. Annu. Rev. Genet. 53, 19-44.
|
|
Ottolini, C.S., Newnham, L.J., Capalbo, A., Natesan, S.A., Joshi, H.A., Cimadomo, D., Griffin, D.K., Sage, K., Summers, M.C., Thornhill, A.R., 2015. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727-735.
|
|
Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., Neale, M.J., Jasin, M., Socci, N.D., 2011. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719-731.
|
|
Ruehle, M.D., Orias, E., Pearson, C.G., 2016. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics 203, 649-665.
|
|
Shifman, S., Bell, J.T., Copley, R.R., Taylor, M.S., Williams, R.W., Mott, R., Flint, J., 2006. A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol. 4, e395.
|
|
Shodhan, A., Kataoka, K., Mochizuki, K., Novatchkova, M., Loidl, J., 2017. A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena. Mol. Biol. Cell 28, 825-833.
|
|
Shodhan, A., Lukaszewicz, A., Novatchkova, M., Loidl, J., 2014. Msh4 and Msh5 function in SC-independent chiasma formation during the streamlined meiosis of Tetrahymena. Genetics 198, 983-993.
|
|
Si, W., Yuan, Y., Huang, J., Zhang, X., Zhang, Y., Zhang, Y., Tian, D., Wang, C., Yang, Y., Yang, S., 2015. Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2 plants. New Phytol. 206, 1491-1502.
|
|
Sishc, B.J., Davis, A.J., 2017. The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancers 9, 81.
|
|
Smagulova, F., Gregoretti, I.V., Brick, K., Khil, P., Camerini-Otero, R.D., Petukhova, G.V., 2011. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 472, 375-378.
|
|
Smeds, L., Mugal, C.F., Qvarnstrom, A., Ellegren, H., 2016. High-resolution mapping of crossover and non-crossover recombination events by whole-genome re-sequencing of an avian pedigree. PLoS Genet. 12, e1006044.
|
|
Stapley, J., Feulner, P.G., Johnston, S.E., Santure, A.W., Smadja, C.M., 2017. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160455.
|
|
Stukenbrock, E.H., Bataillon, T., Dutheil, J.Y., Hansen, T.T., Li, R., Zala, M., McDonald, B.A., Wang, J., Schierup, M.H., 2011. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res. 21, 2157-2166.
|
|
Szurman-Zubrzycka, M., Baran, B., Stolarek-Januszkiewicz, M., Kwasniewska, J., Szarejko, I., Gruszka, D., 2019. The dmc1 mutant allows an insight into the DNA double-strand break repair during meiosis in barley (Hordeum vulgare L.). Front Plant Sci. 10, 761.
|
|
Tian, M., Cai, X., Liu, Y., Liucong, M., Howard-Till, R., 2022. A practical reference for studying meiosis in the model ciliate Tetrahymena thermophila. Mar. Life Sci. Technol. 4, 595-608.
|
|
Tiley, G.P., Burleigh, J.G., 2015. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol. Biol. 15, 194. https://doi.org/10.1186/s12862-015-0473-3.
|
|
Wang, G., Chen, K., Zhang, J., Deng, S., Xiong, J., He, X., Fu, Y., Miao, W., 2020. Drivers of mating type composition in Tetrahymena thermophila. Genome Biol. Evol. 12, 2328-2343.
|
|
Wang, G., Fu, L., Xiong, J., Mochizuki, K., Fu, Y., Miao, W., 2021a. Identification and characterization of base-substitution mutations in the macronuclear genome of the ciliate Tetrahymena thermophila. Genome Biol. Evol. 13, evaa232.
|
|
Wang, G., Wang, S., Chai, X., Zhang, J., Yang, W., Jiang, C., Chen, K., Miao, W., Xiong, J., 2021b. A strategy for complete telomere-to-telomere assembly of ciliate macronuclear genome using ultra-high coverage Nanopore data. Comput. Struct. Biotechnol. J. 19, 1928-1932.
|
|
Xiong, J., Yang, W., Chen, K., Jiang, C., Ma, Y., Chai, X., Yan, G., Wang, G., Yuan, D., Liu, Y., 2019. Hidden genomic evolution in a morphospecies-the landscape of rapidly evolving genes in Tetrahymena. PLoS Biol. 17, e3000294.
|
|
Yang, S., Yuan, Y., Wang, L., Li, J., Wang, W., Liu, H., Chen, J.Q., Hurst, L.D., Tian, D., 2012. Great majority of recombination events in Arabidopsis are gene conversion events. Proc. Natl. Acad. Sci. U.S.A. 109, 20992-20997.
|
|
Zhang, F.G., Zhang, R.R., Gao, J.M., 2021. The organization, regulation, and biological functions of the synaptonemal complex. Asian J Androl. 23, 580-589.
|
|
Zhao, X., Xiong, J., Mao, F., Sheng, Y., Chen, X., Feng, L., Dui, W., Yang, W., Kapusta, A., Feschotte, C., 2019. RNAi-dependent polycomb repression controls transposable elements in Tetrahymena. Genes Dev. 33, 348-364.
|
|
Zhou, Y., Fu, L., Mochizuki, K., Xiong, J., Miao, W., Wang, G., 2022. Absolute quantification of chromosome copy numbers in the polyploid macronucleus of Tetrahymena thermophila at the single-cell level. J. Eukaryot. Microbiol. 69, e12907.
|