9.9
CiteScore
7.1
Impact Factor
Volume 51 Issue 1
Jan.  2024
Turn off MathJax
Article Contents

The evolving views of hematopoiesis: from embryo to adulthood and from in vivo to in vitro

doi: 10.1016/j.jgg.2023.09.005
Funds:

This work was supported by grants from the National Key Research and Development Program of China (2023YFA1800100, 2018YFA0800200, and 2018YFA0801000), the National Natural Science Foundation of China (32030032).

  • Received Date: 2023-08-23
  • Accepted Date: 2023-09-13
  • Rev Recd Date: 2023-09-13
  • Publish Date: 2023-09-19
  • The hematopoietic system composed of hematopoietic stem and progenitor cells (HSPCs) and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions. From gastrulation onwards, there successively emerge primitive hematopoiesis (that produces specialized hematopoietic cells), pro-definitive hematopoiesis (that produces lineage-restricted progenitor cells), and definitive hematopoiesis (that produces multipotent HSPCs). These nascent lineages develop in several transient hematopoietic sites and finally colonize into lifelong hematopoietic sites. The development and maintenance of hematopoietic lineages are orchestrated by cell-intrinsic gene regulatory networks and cell-extrinsic microenvironmental cues. Owing to the progressive methodology (e.g., high-throughput lineage tracing and single-cell functional and omics analyses), our understanding of the developmental origin of hematopoietic lineages and functional properties of certain hematopoietic organs has been updated; meanwhile, new paradigms to characterize rare cell types, cell heterogeneity and its causes, and comprehensive regulatory landscapes have been provided. Here, we review the evolving views of HSPC biology during developmental and postnatal hematopoiesis. Moreover, we discuss recent advances in the in vitro induction and expansion of HSPCs, with a focus on the implications for clinical applications.
  • loading
  • Abramson, S., Miller, R.G., Phillips, R.A., 1977. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J. Exp. Med. 145, 1567-1579.
    Acar, M., Kocherlakota, K.S., Murphy, M.M., Peyer, J.G., Oguro, H., Inra, C.N., Jaiyeola, C., Zhao, Z., Luby-Phelps, K., Morrison, S.J., 2015. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126-130.
    Agarwala, S., Tamplin, O.J., 2018. Neural crossroads in the hematopoietic stem cell niche. Trends Cell Biol. 28, 987-998.
    Akashi, K., Traver, D., Miyamoto, T., Weissman, I.L., 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193-197.
    Alemany, A., Florescu, M., Baron, C.S., Peterson-Maduro, J., van Oudenaarden, A., 2018. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108-112.
    Amabile, G., Welner, R.S., Nombela-Arrieta, C., D'Alise, A.M., Di Ruscio, A., Ebralidze, A.K., Kraytsberg, Y., Ye, M., Kocher, O., Neuberg, D.S., Khrapko, K., et al., 2013. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood 121, 1255-1264.
    Ambler, C.A., Nowicki, J.L., Burke, A.C., Bautch, V.L., 2001. Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts. Dev. Biol. 234, 352-364.
    Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G.Y., Suda, T., 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149-161.
    Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M., Peault, B., 1992. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. U. S. A. 89, 2804-2808.
    Baysoy, A., Bai, Z.L., Satija, R., Fan, R., 2023. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-023-00615-w.
    Becker, A.J., McCulloch, E.A., Till, J.E., 1963. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452-454.
    Bertrand, J.Y., Chi, N.C., Santoso, B., Teng, S.T., Stainier, D.Y.R., Traver, D., 2010. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108-120.
    Biben, C., Weber, T.S., Potts, K.S., Choi, J., Miles, D.C., Carmagnac, A., Sargeant, T., de Graaf, C.A., Fennell, K.A., Farley, A., et al., 2023. In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis. Nat. Commun. 14, 41.
    Boiers, C., Carrelha, J., Lutteropp, M., Luc, S., Green, J.C., Azzoni, E., Woll, P.S., Mead, A.J., Hultquist, A., Swiers, G., et al., 2013. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13, 535-548.
    Boisset, J.C., Clapes, T., Klaus, A., Papazian, N., Onderwater, J., Mommaas-Kienhuis, M., Cupedo, T., Robin, C., 2015. Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta. Blood 125, 465-469.
    Boisset, J.C., van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., Robin, C., 2010. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116-120.
    Boitano, A.E., Wang, J., Romeo, R., Bouchez, L.C., Parker, A.E., Sutton, S.E., Walker, J.R., Flaveny, C.A., Perdew, G.H., Denison, M.S., et al., 2010. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345-1348.
    Bonev, B., Cavalli, G., 2016. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661-678.
    Buenrostro, J.D., Corces, M.R., Lareau, C.A., Wu, B., Schep, A.N., Aryee, M.J., Majeti, R., Chang, H.Y., Greenleaf, W.J., 2018. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535-1548.
    Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder, M.P., Chang, H.Y., Greenleaf, W.J., 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486-490.
    Calvanese, V., Capellera-Garcia, S., Ma, F., Fares, I., Liebscher, S., Ng, E.S., Ekstrand, S., Aguade-Gorgorio, J., Vavilina, A., Lefaudeux, D., et al., 2022. Mapping human haematopoietic stem cells from haemogenic endothelium to birth. Nature 604, 534-540.
    Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., Bhatia, M., 2003. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906-915.
    Chagraoui, J., Girard, S., Spinella, J.F., Simon, L., Bonneil, E., Mayotte, N., MacRae, T., Coulombe-Huntington, J., Bertomeu, T., Moison, C., et al., 2021. UM171 preserves epigenetic marks that are reduced in ex vivo culture of human HSCs via potentiation of the CLR3-KBTBD4 complex. Cell Stem Cell 28, 48-62.
    Chen, C., Yu, W., Tober, J., Gao, P., He, B., Lee, K., Trieu, T., Blobel, G.A., Speck, N.A., Tan, K., 2019. Spatial genome re-organization between fetal and adult hematopoietic stem cells. Cell Rep. 29, 4200-4211.
    Chen, M.J., Li, Y., De Obaldia, M.E., Yang, Q., Yzaguirre, A.D., Yamada-Inagawa, T., Vink, C.S., Bhandoola, A., Dzierzak, E., Speck, N.A., 2011. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 9, 541-552.
    Cheng, Y., Luo, H., Izzo, F., Pickering, B.F., Nguyen, D., Myers, R., Schurer, A., Gourkanti, S., Bruning, J.C., Vu, L.P., et al., 2019. m(6)A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep. 28, 1703-1716.
    Christodoulou, C., Spencer, J.A., Yeh, S.A., Turcotte, R., Kokkaliaris, K.D., Panero, R., Ramos, A., Guo, G., Seyedhassantehrani, N., Esipova, T.V., et al., 2020. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 578, 278-283.
    Cohen, S., Roy, J., Lachance, S., Delisle, J.S., Marinier, A., Busque, L., Roy, D.C., Barabe, F., Ahmad, I., Bambace, N., et al., 2020. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study. Lancet Haematol. 7, e134-e145.
    Cremer, T., Cremer, C., 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292-301.
    Csaszar, E., Kirouac, D.C., Yu, M., Wang, W., Qiao, W., Cooke, M.P., Boitano, A.E., Ito, C., Zandstra, P.W., 2012. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10, 218-229.
    Cumano, A., Dieterlen-Lievre, F., Godin, I., 1996. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86, 907-916.
    Cumano, A., Ferraz, J.C., Klaine, M., Di Santo, J.P., Godin, I., 2001. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15, 477-485.
    Davidson, A.J., Ernst, P., Wang, Y., Dekens, M.P., Kingsley, P.D., Palis, J., Korsmeyer, S.J., Daley, G.Q., Zon, L.I., 2003. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425, 300-306.
    de Bruijn, M.F., Speck, N.A., Peeters, M.C., Dzierzak, E., 2000. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465-2474.
    Decker, M., Leslie, J., Liu, Q., Ding, L., 2018. Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance. Science 360, 106-110.
    Dick, J.E., Magli, M.C., Huszar, D., Phillips, R.A., Bernstein, A., 1985. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42, 71-79.
    Dignum, T., Varnum-Finney, B., Srivatsan, S.R., Dozono, S., Waltner, O., Heck, A.M., Ishida, T., Nourigat-McKay, C., Jackson, D.L., Rafii, S., et al., 2021. Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo. Cell Rep. 36, 109675.
    Ding, L., Morrison, S.J., 2013. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231-235.
    Ding, L., Saunders, T.L., Enikolopov, G., Morrison, S.J., 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457-462.
    Ding, Y., Liu, Z., Liu, F., 2021. Transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates. Dev. Biol. 475, 156-164.
    Ditadi, A., Sturgeon, C.M., Tober, J., Awong, G., Kennedy, M., Yzaguirre, A.D., Azzola, L., Ng, E.S., Stanley, E.G., French, D.L., et al., 2015. Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nat. Cell Biol. 17, 580-591.
    Ema, H., Nakauchi, H., 2000. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284-2288.
    Enciso, J.M., Konecny, C.M., Karpen, H.E., Hirschi, K.K., 2010. Endothelial cell migration during murine yolk sac vascular remodeling occurs by means of a Rac1 and FAK activation pathway in vivo. Dev. Dyn. 239, 2570-2583.
    Fares, I., Chagraoui, J., Gareau, Y., Gingras, S., Ruel, R., Mayotte, N., Csaszar, E., Knapp, D.J., Miller, P., Ngom, M., et al., 2014. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345, 1509-1512.
    Farlik, M., Halbritter, F., Muller, F., Choudry, F.A., Ebert, P., Klughammer, J., Farrow, S., Santoro, A., Ciaurro, V., Mathur, A., et al., 2016. DNA methylation dynamics of human hematopoietic stem cell differentiation. Cell Stem Cell 19, 808-822.
    Feng, T., Gao, Z., Kou, S., Huang, X., Jiang, Z., Lu, Z., Meng, J., Lin, C.P., Zhang, H., 2020. No evidence for erythro-myeloid progenitor-derived vascular endothelial cells in multiple organs. Circ. Res. 127, 1221-1232.
    Ferkowicz, M.J., Yoder, M.C., 2005. Blood island formation: longstanding observations and modern interpretations. Exp. Hematol. 33, 1041-1047.
    Frame, J.M., McGrath, K.E., Palis, J., 2013. Erythro-myeloid progenitors: "definitive" hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood Cells Mol. Dis. 51, 220-225.
    Ganuza, M., Hall, T., Finkelstein, D., Chabot, A., Kang, G., McKinney-Freeman, S., 2017. Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. Nat. Cell Biol. 19, 1153-1163.
    Ganuza, M., Hall, T., Myers, J., Nevitt, C., Sanchez-Lanzas, R., Chabot, A., Ding, J., Kooienga, E., Caprio, C., Finkelstein, D., et al., 2022. Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors. Nat. Cell Biol. 24, 1475-1486.
    Gao, L., Tober, J., Gao, P., Chen, C., Tan, K., Speck, N.A., 2018. RUNX1 and the endothelial origin of blood. Exp. Hematol. 68, 2-9.
    Gao, S.W., Liu, F., 2018. Fetal liver: an ideal niche for hematopoietic stem cell expansion. Sci. China Life Sci. 61, 885-892.
    Gao, S.W., Shi, Q., Zhang, Y.F., Liang, G.X., Kang, Z.X., Huang, B.F., Ma, D.Y., Wang, L., Jiao, J.W., Fang, X.D., et al., 2022. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res. 32, 38-53.
    Gao, X., Zhang, D., Xu, C., Li, H., Caron, K.M., Frenette, P.S., 2021. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589, 591-596.
    Ghersi, J.J., Baldissera, G., Hintzen, J., Luff, S.A., Cheng, S., Xia, I.F., Sturgeon, C.M., Nicoli, S., 2023. Haematopoietic stem and progenitor cell heterogeneity is inherited from the embryonic endothelium. Nat. Cell Biol. 25, 1135-1145.
    Ginhoux, F., Guilliams, M., 2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439-449.
    Gordon-Keylock, S., Sobiesiak, M., Rybtsov, S., Moore, K., Medvinsky, A., 2013. Mouse extraembryonic arterial vessels harbor precursors capable of maturing into definitive HSCs. Blood 122, 2338-2345.
    Hadland, B.K., Huppert, S.S., Kanungo, J., Xue, Y., Jiang, R., Gridley, T., Conlon, R.A., Cheng, A.M., Kopan, R., Longmore, G.D., 2004. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104, 3097-3105.
    Harland, L.T.G., Simon, C.S., Senft, A.D., Costello, I., Greder, L., Imaz-Rosshandler, I., Gottgens, B., Marioni, J.C., Bikoff, E.K., Porcher, C. et al., 2021. The T-box transcription factor Eomesodermin governs haemogenic competence of yolk sac mesodermal progenitors. Nat. Cell Biol. 23, 61-74.
    He, Q., Zhang, C., Wang, L., Zhang, P., Ma, D., Lv, J., Liu, F., 2015. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood 125, 1098-1106.
    He, S., Tian, Y., Feng, S., Wu, Y., Shen, X., Chen, K., He, Y., Sun, Q., Li, X., Xu, J., et al., 2020. In vivo single-cell lineage tracing in zebrafish using high-resolution infrared laser-mediated gene induction microscopy. Elife 9, e52024.
    Heng, J., Lv, P., Zhang, Y., Cheng, X., Wang, L., Ma, D., Liu, F., 2020. Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biol. 18, e3000696.
    Henninger, J., Santoso, B., Hans, S., Durand, E., Moore, J., Mosimann, C., Brand, M., Traver, D., Zon, L., 2017. Clonal fate mapping quantifies the number of haematopoietic stem cells that arise during development. Nat. Cell Biol. 19, 17-27.
    Himburg, H.A., Termini, C.M., Schlussel, L., Kan, J., Li, M., Zhao, L., Fang, T., Sasine, J.P., Chang, V.Y., Chute, J.P., 2018. Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell 23, 370-381.
    Hoeffel, G., Chen, J., Lavin, Y., Low, D., Almeida, F.F., See, P., Beaudin, A.E., Lum, J., Low, I., Forsberg, E.C., et al., 2015. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665-678.
    Hou, S., Li, Z., Dong, J., Gao, Y., Chang, Z., Ding, X., Li, S., Li, Y., Zeng, Y., Xin, Q., et al., 2022. Heterogeneity in endothelial cells and widespread venous arterialization during early vascular development in mammals. Cell Res. 32, 333-348.
    Hou, S., Li, Z., Zheng, X., Gao, Y., Dong, J., Ni, Y., Wang, X., Li, Y., Ding, X., Chang, Z., et al., 2020. Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Res. 30, 376-392.
    Huber, T.L., Kouskoff, V., Fehling, H.J., Palis, J., Keller, G., 2004. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432, 625-630.
    Ibarra-Soria, X., Jawaid, W., Pijuan-Sala, B., Ladopoulos, V., Scialdone, A., Jorg, D.J., Tyser, R.C.V., Calero-Nieto, F.J., Mulas, C., Nichols, J., et al., 2018. Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat. Cell Biol. 20, 127-134.
    Iruela-Arispe, M.L., 2018. A dual origin for blood vessels. Nature 562, 195-197.
    Izzo, F., Lee, S.C., Poran, A., Chaligne, R., Gaiti, F., Gross, B., Murali, R.R., Deochand, S.D., Ang, C., Jones, P.W., et al., 2020. DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat. Genet. 52, 378-387.
    Jacobson, L.O., Simmons, E.L., Marks, E.K., Eldredge, J.H., 1951. Recovery from radiation injury. Science 113, 510-511.
    Jin, S.W., Beis, D., Mitchell, T., Chen, J.N., Stainier, D.Y., 2005. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199-5209.
    Jones, P.A., 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484-492.
    Kara, N., Xue, Y., Zhao, Z., Murphy, M.M., Comazzetto, S., Lesser, A., Du, L., Morrison, S.J., 2023. Endothelial and Leptin Receptor(+) cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Dev. Cell 58, 348-360.
    Kasper, D.M., Hintzen, J., Wu, Y., Ghersi, J.J., Mandl, H.K., Salinas, K.E., Armero, W., He, Z., Sheng, Y., Xie, Y., et al., 2020. The N-glycome regulates the endothelial-to-hematopoietic transition. Science 370, 1186-1191.
    Kaufman, D.S., Hanson, E.T., Lewis, R.L., Auerbach, R., Thomson, J.A., 2001. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 98, 10716-10721.
    Keller, G., Paige, C., Gilboa, E., Wagner, E.F., 1985. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318, 149-154.
    Kennedy, M., D'Souza, S.L., Lynch-Kattman, M., Schwantz, S., Keller, G., 2007. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109, 2679-2687.
    Khan, J.A., Mendelson, A., Kunisaki, Y., Birbrair, A., Kou, Y., Arnal-Estape, A., Pinho, S., Ciero, P., Nakahara, F., Ma'ayan, A., et al., 2016. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351, 176-180.
    Kissa, K., Herbomel, P., 2010. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112-125.
    Klemm, S.L., Shipony, Z., Greenleaf, W.J., 2019. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207-220.
    Kohli, V., Schumacher, J.A., Desai, S.P., Rehn, K., Sumanas, S., 2013. Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev. Cell 25, 196-206.
    Kondo, M., Weissman, I.L., Akashi, K., 1997. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661-672.
    Kricun, M.E., 1985. Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol. 14, 10-19.
    Kumaravelu, P., Hook, L., Morrison, A.M., Ure, J., Zhao, S.L., Zuyev, S., Ansell, J., Medvinsky, A., 2002. Quantitative developmental anatomy of definitive haematopoietic stem cells long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891-4899.
    Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T., Wei, Q., Lucas, D., Ito, K., et al., 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637-643.
    Kyba, M., Perlingeiro, R.C., Daley, G.Q., 2002. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29-37.
    Lancrin, C., Sroczynska, P., Stephenson, C., Allen, T., Kouskoff, V., Lacaud, G., 2009. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457, 892-895.
    Lee, D., Park, C., Lee, H., Lugus, J.J., Kim, S.H., Arentson, E., Chung, Y.S., Gomez, G., Kyba, M., Lin, S., et al., 2008. ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2, 497-507.
    Lee, H., Bao, S., Qian, Y., Geula, S., Leslie, J., Zhang, C., Hanna, J.H., Ding, L., 2019. Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation. Nat. Cell Biol. 21, 700-709.
    Lee, L.K., Ghorbanian, Y., Wang, W., Wang, Y., Kim, Y.J., Weissman, I.L., Inlay, M.A., Mikkola, H.K.A., 2016. LYVE1 marks the divergence of yolk sac definitive hemogenic endothelium from the primitive erythroid lineage. Cell Rep. 17, 2286-2298.
    Lemischka, I.R., Raulet, D.H., Mulligan, R.C., 1986. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917-927.
    Li, D., Xue, W., Li, M., Dong, M., Wang, J., Wang, X., Li, X., Chen, K., Zhang, W., Wu, S., et al., 2018. VCAM-1(+) macrophages guide the homing of HSPCs to a vascular niche. Nature 564, 119-124.
    Lis, R., Karrasch, C.C., Poulos, M.G., Kunar, B., Redmond, D., Duran, J.G.B., Badwe, C.R., Schachterle, W., Ginsberg, M., Xiang, J., et al., 2017. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature 545, 439-445.
    Liu, F., Walmsley, M., Rodaway, A., Patient, R., 2008. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr. Biol. 18, 1234-1240.
    Liu, Z., Tu, H., Kang, Y., Xue, Y., Ma, D., Zhao, C., Li, H., Wang, L., Liu, F., 2019. Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish. Nat. Commun. 10, 1839.
    Lorenz, E., Uphoff, D., Reid, T.R., Shelton, E., 1951. Modification of irradiation injury in mice and Guinea pigs by bone marrow injections. J. Natl. Cancer Inst. 12, 197-201.
    Lu, R., Neff, N.F., Quake, S.R., Weissman, I.L., 2011. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29, 928-933.
    Lu, X., Zhang, Y., Liu, F., Wang, L., 2020. Rac2 regulates the migration of T lymphoid progenitors to the thymus during zebrafish embryogenesis. J. Immunol. 204, 2447-2454.
    Marass, M., Beisaw, A., Gerri, C., Luzzani, F., Fukuda, N., Gunther, S., Kuenne, C., Reischauer, S., Stainier, D.Y.R., 2019. Genome-wide strategies reveal target genes of Npas4l associated with vascular development in zebrafish. Development 146, dev173427.
    McCulloch, E.A., Till, J.E., 1960. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat. Res. 13, 115-125.
    McKinney-Freeman, S., Cahan, P., Li, H., Lacadie, S.A., Huang, H.T., Curran, M., Loewer, S., Naveiras, O., Kathrein, K.L., Konantz, M., et al., 2012. The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell 11, 701-714.
    Medvinsky, A., Dzierzak, E., 1996. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897-906.
    Mendez-Ferrer, S., Michurina, T.V., Ferraro, F., Mazloom, A.R., Macarthur, B.D., Lira, S.A., Scadden, D.T., Ma'ayan, A., Enikolopov, G.N., Frenette, P.S., 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829-834.
    Meng, Y., Carrelha, J., Drissen, R., Ren, X., Zhang, B., Gambardella, A., Valletta, S., Thongjuea, S., Jacobsen, S.E., Nerlov, C., 2023. Epigenetic programming defines haematopoietic stem cell fate restriction. Nat. Cell Biol. 25, 812-822.
    Mikkola, H.K., Orkin, S.H., 2006. The journey of developing hematopoietic stem cells. Development 133, 3733-3744.
    Moore, M.A., Metcalf, D., 1970. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol. 18, 279-296.
    Morrison, S.J., Wandycz, A.M., Hemmati, H.D., Wright, D.E., Weissman, I.L., 1997. Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929-1939.
    Morrison, S.J., Weissman, I.L., 1994. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661-673.
    Muller-Sieburg, C.E., Whitlock, C.A., Weissman, I.L., 1986. Isolation of two early B lymphocyte progenitors from mouse marrow: a committed pre-pre-B cell and a clonogenic Thy-1-lo hematopoietic stem cell. Cell 44, 653-662.
    Murayama, E., Kissa, K., Zapata, A., Mordelet, E., Briolat, V., Lin, H.F., Handin, R.I., Herbomel, P., 2006. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25, 963-975.
    Naik, S.H., Perie, L., Swart, E., Gerlach, C., van Rooij, N., de Boer, R.J., Schumacher, T.N., 2013. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496, 229-232.
    Nakano, T., Kodama, H., Honjo, T., 1994. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098-1101.
    Nguyen, P.D., Hollway, G.E., Sonntag, C., Miles, L.B., Hall, T.E., Berger, S., Fernandez, K.J., Gurevich, D.B., Cole, N.J., Alaei, S., et al., 2014. Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1. Nature 512, 314-318.
    Orkin, S.H., Zon, L.I., 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631-644.
    Osawa, M., Hanada, K., Hamada, H., Nakauchi, H., 1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242-245.
    Palis, J., Chan, R.J., Koniski, A., Patel, R., Starr, M., Yoder, M.C., 2001. Spatial and temporal emergence of high proliferative potential hematopoietic precursors during murine embryogenesis. Proc. Natl. Acad. Sci. U. S. A. 98, 4528-4533.
    Palis, J., Robertson, S., Kennedy, M., Wall, C., Keller, G., 1999. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073-5084.
    Pardanaud, L., Dieterlen-Lievre, F., 1999. Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development 126, 617-627.
    Pardanaud, L., Luton, D., Prigent, M., Bourcheix, L.M., Catala, M., Dieterlen-Lievre, F., 1996. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363-1371.
    Patel, S.H., Christodoulou, C., Weinreb, C., Yu, Q., da Rocha, E.L., Pepe-Mooney, B.J., Bowling, S., Li, L., Osorio, F.G., Daley, G.Q., et al., 2022. Lifelong multilineage contribution by embryonic-born blood progenitors. Nature 606, 747-753.
    Pei, W., Feyerabend, T.B., Rossler, J., Wang, X., Postrach, D., Busch, K., Rode, I., Klapproth, K., Dietlein, N., Quedenau, C., et al., 2017. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456-460.
    Peng, Y.J., Yu, H., Hao, X., Dong, W., Yin, X., Lin, M., Zheng, J., Zhou, B.O., 2018. Luteinizing hormone signaling restricts hematopoietic stem cell expansion during puberty. EMBO J. 37, e98984.
    Pijuan-Sala, B., Griffiths, J.A., Guibentif, C., Hiscock, T.W., Jawaid, W., Calero-Nieto, F.J., Mulas, C., Ibarra-Soria, X., Tyser, R.C.V., Ho, D.L.L., et al., 2019. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490-495.
    Pinho, S., Frenette, P.S., 2019. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303-320.
    Plein, A., Fantin, A., Denti, L., Pollard, J.W., Ruhrberg, C., 2018. Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature 562, 223-228.
    Pouget, C., Gautier, R., Teillet, M.A., Jaffredo, T., 2006. Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133, 1013-1022.
    Qian, H., Buza-Vidas, N., Hyland, C.D., Jensen, C.T., Antonchuk, J., Mansson, R., Thoren, L.A., Ekblom, M., Alexander, W.S., Jacobsen, S.E., 2007. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1, 671-684.
    Reischauer, S., Stone, O.A., Villasenor, A., Chi, N., Jin, S.W., Martin, M., Lee, M.T., Fukuda, N., Marass, M., Witty, A., et al., 2016. Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature 535, 294-298.
    Rentas, S., Holzapfel, N., Belew, M.S., Pratt, G., Voisin, V., Wilhelm, B.T., Bader, G.D., Yeo, G.W., Hope, K.J., 2016. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature 532, 508-511.
    Rhodes, K.E., Gekas, C., Wang, Y., Lux, C.T., Francis, C.S., Chan, D.N., Conway, S., Orkin, S.H., Yoder, M.C., Mikkola, H.K., 2008. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2, 252-263.
    Riddell, J., Gazit, R., Garrison, B.S., Guo, G., Saadatpour, A., Mandal, P.K., Ebina, W., Volchkov, P., Yuan, G.C., Orkin, S.H., et al., 2014. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157, 549-564.
    Rideout, W.M., 3rd, Hochedlinger, K., Kyba, M., Daley, G.Q., Jaenisch, R., 2002. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17-27.
    Roy, A., Wang, G., Iskander, D., O'Byrne, S., Elliott, N., O'Sullivan, J., Buck, G., Heuston, E.F., Wen, W.X., Meira, A.R., et al., 2021. Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development. Cell Rep. 36, 109698.
    Rybtsov, S., Ivanovs, A., Zhao, S., Medvinsky, A., 2016. Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development 143, 1284-1289.
    Sakurai, M., Ishitsuka, K., Ito, R., Wilkinson, A.C., Kimura, T., Mizutani, E., Nishikii, H., Sudo, K., Becker, H.J., Takemoto, H., Sano, T., Kataoka, K., Takahashi, S., Nakamura, Y., Kent, D.G., Iwama, A., Chiba, S., Okamoto, S., Nakauchi, H., Yamazaki, S., 2023. Chemically defined cytokine-free expansion of human haematopoietic stem cells. Nature 615 (7950), 127–133. https://doi.org/10.1038/s41586-023-05739-9.
    Sanchez, M.J., Holmes, A., Miles, C., Dzierzak, E., 1996. Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 5 (6), 513–525. https://doi.org/10.1016/s1074-7613(00)80267-8.
    Sandler, V.M., Lis, R., Liu, Y., Kedem, A., James, D., Elemento, O., Butler, J.M., Scandura, J.M., Rafii, S., 2014. Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 511, 312-318.
    Sender, R., Milo, R., 2021. The distribution of cellular turnover in the human body. Nat. Med. 27, 45-48.
    Shen, B., Tasdogan, A., Ubellacker, J.M., Zhang, J., Nosyreva, E.D., Du, L., Murphy, M.M., Hu, S., Yi, Y., Kara, N., et al., 2021. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591, 438-444.
    Shi, H., Wei, J., He, C., 2019. Where, when, and how: context-dependent functions of RNA methylation writers, raders, and erasers. Mol. Cell 74, 640-650.
    Smith, L.G., Weissman, I.L., Heimfeld, S., 1991. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc. Natl. Acad. Sci. U. S. A. 88, 2788-2792.
    Spangrude, G.J., Heimfeld, S., Weissman, I.L., 1988. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58-62.
    Spangrude, G.J., Johnson, G.R., 1990. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc. Natl. Acad. Sci. U. S. A. 87, 7433-7437.
    Stier, S., Ko, Y., Forkert, R., Lutz, C., Neuhaus, T., Grunewald, E., Cheng, T., Dombkowski, D., Calvi, L.M., Rittling, S.R., et al., 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201, 1781-1791.
    Stuart, T., Satija, R., 2019. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257-272.
    Sugimura, R., Jha, D.K., Han, A., Soria-Valles, C., da Rocha, E.L., Lu, Y.F., Goettel, J.A., Serrao, E., Rowe, R.G., Malleshaiah, M., et al., 2017. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545, 432-438.
    Sugiyama, T., Kohara, H., Noda, M., Nagasawa, T., 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977-988.
    Sun, J., Ramos, A., Chapman, B., Johnnidis, J.B., Le, L., Ho, Y.J., Klein, A., Hofmann, O., Camargo, F.D., 2014. Clonal dynamics of native haematopoiesis. Nature 51, 322-327.
    Swiers, G., Baumann, C., O'Rourke, J., Giannoulatou, E., Taylor, S., Joshi, A., Moignard, V., Pina, C., Bee, T., Kokkaliaris, K.D., et al., 2013. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nat. Commun. 4, 2924.
    Tamplin, O.J., Durand, E.M., Carr, L.A., Childs, S.J., Hagedorn, E.J., Li, P.L., Yzaguirre, A.D., Speck, N.A., Zon, L.I., 2015. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160, 241-252.
    Taoudi, S., Gonneau, C., Moore, K., Sheridan, J.M., Blackburn, C.C., Taylor, E., Medvinsky, A., 2008. Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+CD45+ pre-definitive HSCs. Cell Stem Cell 3, 99-108.
    Tian, Y., Xu, J., Feng, S., He, S., Zhao, S., Zhu, L., Jin, W., Dai, Y., Luo, L., Qu, J.Y., et al., 2017. The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells. J. Exp. Med. 214, 3347-3360.
    Tikhonova, A.N., Dolgalev, I., Hu, H., Sivaraj, K.K., Hoxha, E., Cuesta-Dominguez, A., Pinho, S., Akhmetzyanova, I., Gao, J., Witkowski, M., et al., 2019. The bone marrow microenvironment at single-cell resolution. Nature 569, 222-228.
    Till, J.E., McCulloch, E.A., 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213-222.
    Upadhaya, S., Krichevsky, O., Akhmetzyanova, I., Sawai, C.M., Fooksman, D.R., Reizis, B., 2020. Intravital imaging reveals motility of adult hematopoietic stem cells in the bone marrow niche. Cell Stem Cell 27, 336-345.
    Vogeli, K.M., Jin, S.W., Martin, G.R., Stainier, D.Y., 2006. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443, 337-339.
    Wang, J., Sun, S., Deng, H., 2023. Chemical reprogramming for cell fate manipulation: methods, applications, and perspectives. Cell Stem Cell 30, 1130-1147.
    Wang, S., He, Q., Ma, D., Xue, Y., Liu, F., 2015. Irf4 regulates the choice between T lymphoid-primed progenitor and myeloid lineage fates during embryogenesis. Dev. Cell 34, 621-631.
    Wilkinson, A.C., Igarashi, K.J., Nakauchi, H., 2020. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat. Rev. Genet. 21, 541-554.
    Wilkinson, A.C., Ishida, R., Kikuchi, M., Sudo, K., Morita, M., Crisostomo, R.V., Yamamoto, R., Loh, K.M., Nakamura, Y., Watanabe, M., et al., 2019. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature 571, 117-121.
    Williams, D.A., Lemischka, I.R., Nathan, D.G., Mulligan, R.C., 1984. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 31, 476-480.
    Wu, A.M., Till, J.E., Siminovitch, L., McCulloch, E.A., 1967. A cytological study of the capacity for differentiation of normal hemopoietic colony-forming cells. J. Cell. Physiol. 69, 177-184.
    Xia, J., Kang, Z., Xue, Y., Ding, Y., Gao, S., Zhang, Y., Lv, P., Wang, X., Ma, D., Wang, L., et al., 2021. A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 118, e2015748118.
    Xia, J., Liu, M., Zhu, C., Liu, S., Ai, L., Ma, D., Zhu, P., Wang, L., Liu, F., 2023. Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity. Cell Res. 33, 448-463.
    Xue, Y., Liu, D., Cui, G., Ding, Y., Ai, D., Gao, S., Zhang, Y., Suo, S., Wang, X., Lv, P., et al., 2019. A 3D aatlas of hematopoietic stem and progenitor cell expansion by multi-dimensional RNA-seq analysis. Cell Rep. 27, 1567-1578.
    Xue, Y., Lv, J., Zhang, C., Wang, L., Ma, D., Liu, F., 2017. The vascular niche regulates hematopoietic stem and progenitor cell lodgment and expansion via klf6a-ccl25b. Dev. Cell 42, 349-362.
    Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K.L., Ema, H., Nakauchi, H., 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112-1126.
    Yao, Q.J., Sang, L., Lin, M., Yin, X., Dong, W., Gong, Y., Zhou, B.O., 2018. Mettl3-Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res. 28, 952-954.
    Yoder, M.C., Hiatt, K., Mukherjee, P., 1997. In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc. Natl. Acad. Sci. U. S. A. 94, 6776-6780.
    Yokomizo, T., Ideue, T., Morino-Koga, S., Tham, C.Y., Sato, T., Takeda, N., Kubota, Y., Kurokawa, M., Komatsu, N., Ogawa, M., et al., 2022. Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature 609, 779-784.
    Yoshihara, H., Arai, F., Hosokawa, K., Hagiwara, T., Takubo, K., Nakamura, Y., Gomei, Y., Iwasaki, H., Matsuoka, S., Miyamoto, K., et al., 2007. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685-697.
    Yue, R., Zhou, B.O., Shimada, I.S., Zhao, Z., Morrison, S.J., 2016. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18, 782-796.
    Yzaguirre, A.D., Speck, N.A., 2016. Insights into blood cell formation from hemogenic endothelium in lesser-known anatomic sites. Dev. Dyn. 245, 1011-1028.
    Zeller, P., Yeung, J., Vinas Gaza, H., de Barbanson, B.A., Bhardwaj, V., Florescu, M., van der Linden, R., van Oudenaarden, A., 2023. Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis. Nat. Genet. 55, 333-345.
    Zeng, Y., He, J., Bai, Z., Li, Z., Gong, Y., Liu, C., Ni, Y., Du, J., Ma, C., Bian, L., et al., 2019. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res. 29, 881-894.
    Zhang, C., Chen, Y., Sun, B., Wang, L., Yang, Y., Ma, D., Lv, J., Heng, J., Ding, Y., Xue, Y., et al., 2017. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature 549, 273-276.
    Zhang, C., Patient, R., Liu, F., 2013. Hematopoietic stem cell development and regulatory signaling in zebrafish. Biochim. Biophys. Acta 1830, 2370-2374.
    Zhang, C., Xu, Z., Yang, S., Sun, G., Jia, L., Zheng, Z., Gu, Q., Tao, W., Cheng, T., Li, C., et al., 2020. tagHi-C reveals 3D chromatin architecture dynamics during mouse hematopoiesis. Cell Rep. 32, 108206.
    Zhang, P., He, Q., Chen, D., Liu, W., Wang, L., Zhang, C., Ma, D., Li, W., Liu, B., Liu, F., 2015. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res. 25, 1093-1107.
    Zhang, P., Liu, F., 2011. In vivo imaging of hematopoietic stem cell development in the zebrafish. Front. Med. 5, 239-247.
    Zhang, Y., Gao, S., Xia, J., Liu, F., 2018. Hematopoietic hierarchy - an updated roadmap. Trends Cell Biol. 28, 976-986.
    Zhang, Y., Liu, F., 2019. Multidimensional single-cell analyses in organ development and maintenance. Trends Cell Biol. 29, 477-486.
    Zhang, Y., Xie, X., Huang, Y., Liu, M., Li, Q., Luo, J., He, Y., Yin, X., Ma, S., Cao, W., et al., 2022. Temporal molecular program of human hematopoietic stem and progenitor cells after birth. Dev. Cell 57, 2745-2760.
    Zhou, B.O., Yu, H., Yue, R., Zhao, Z., Rios, J.J., Naveiras, O., Morrison, S.J., 2017. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19, 891-903.
    Zhou, B.O., Yue, R., Murphy, M.M., Peyer, J.G., Morrison, S.J., 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154-168.
    Zhou, F., Li, X., Wang, W., Zhu, P., Zhou, J., He, W., Ding, M., Xiong, F., Zheng, X., Li, Z., et al., 2016. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533, 487-492.
    Zhu, Q., Gao, P., Tober, J., Bennett, L., Chen, C., Uzun, Y., Li, Y., Howell, E.D., Mumau, M., Yu, W., et al., 2020. Developmental trajectory of prehematopoietic stem cell formation from endothelium. Blood 136, 845-856.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (87) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return